天堂国产午夜亚洲专区-少妇人妻综合久久蜜臀-国产成人户外露出视频在线-国产91传媒一区二区三区

家蠶新突變體二齡不眠蠶基因的定位克隆及功能研究

發(fā)布時間:2018-08-02 19:53
【摘要】:家蠶(Bombyx mori)作為一種重要的經(jīng)濟型鱗翅目昆蟲,有著特殊的研究價值,已經(jīng)成為重要的實驗材料,前期積累了大量的關于基因的功能研究和相關的基礎研究成果,使家蠶已經(jīng)發(fā)展成為進行鱗翅目研究的模式生物。家蠶為完全變態(tài)發(fā)育昆蟲,蛻皮是其生長、發(fā)育、變態(tài)的重要生理過程,是家蠶個體生長發(fā)育成熟所必需的。家蠶二齡不眠蠶突變體(non-molting in the 2nd instar,nm2)發(fā)育到二齡將眠期后不能蛻皮而死亡,是在家蠶品種資源C603中發(fā)現(xiàn)的一種新不眠蠶突變體。本研究對該突變體進行遺傳分析,采用圖位克隆的方法對nm2基因進行定位克隆,構建遺傳連鎖圖,進一步采用qRT-PCR、2-DE、RNAi、蛻皮激素和環(huán)己酰亞胺添食等方法對候選基因進行表達分析和功能驗證,以闡述該突變體發(fā)生的分子機制。主要的研究結果如下:一、nm2突變體的遺傳分析家蠶二齡不眠蠶突變體是從家蠶品種資源C603中分離獲得的一個自然突變體,該突變體在1齡期能全部正常就眠,發(fā)育到2齡將眠期皮膚光滑有光澤,進食量減少,不能正常入眠蛻皮,維持二齡將眠蠶狀態(tài)6~8d后陸續(xù)死亡。遺傳分析表明該突變是由常染色體上的一個隱性遺傳基因控制的,具有隱性純合(即nm2nm2)致死性。二、nm2突變基因的定位構建P1、P2、F1、BC1F和BC1M群體,用P1、F1和P2篩選獲得家蠶每個連鎖群上的SSR多態(tài)性分子標記,然后分別用有分離的BC1F和BC1M群體中正常型和突變型2種個體進行驗證。將BC1F群體中同一蛾區(qū)的10個二齡不眠蠶突變體和10個正常個體用作連鎖分析,結果表明nm2基因位于家蠶第5連鎖群;用BC1M群體中594個突變型個體進行精細定位,結果顯示nm2基因位于多態(tài)性標記S2529-27與S2529-32之間,這兩個多態(tài)性標記之間相距約275.6kb,其中有13個候選基因。三、nm2突變基因的鑒定采用RT-PCR方法將13個候選基因進行轉錄水平表達的比較分析,BMgn002601和BMgn002602在正常型個體和突變個體間有表達差異。為進一步確定引起二齡不眠的主效基因,克隆了兩個基因的ORF,發(fā)現(xiàn)BMgn002601的ORF在野生型和突變體之間不存在差異,而BMgn002602的ORF在其功能區(qū)缺失了217bp。對BMgn002602的RNAi試驗顯示BMgn002601在轉錄水平的表達受到BMgn002602表達的影響,BMgn002601在轉錄水平的表達隨著BMgn002602的表達下降而升高,而且對BMgn002602進行RNAi后,二齡家蠶入眠時間可推遲48h-72h。因此初步推斷BMgn002602是引起nm2突變的主效基因。BMgn002602為一個編碼家蠶表皮蛋白的基因(BmCPG10)。在克隆獲得BmCPG10基因ORF序列的基礎上,利用RACE和克隆測序技術獲得了其3’UTR、5’UTR序列和BMgn002602基因的啟動子序列,在突變型家蠶中該基因5’UTR和啟動子與野生型一致,3’UTR序列與野生型存在差異。四、nm2突變基因的表達及功能驗證采用熒光定量PCR的方法測定了BmCPG10基因在野生型家蠶體內(nèi)的發(fā)育時期表達譜和組織表達譜。BmCPG10基因在家蠶各個發(fā)育時期均有表達,在幼蟲起蠶或盛食期高,而在每齡的眠期或將眠期其表達量均降低;BmCPG10基因在表皮、頭部及氣管有較高的表達,在中腸、馬氏管、前胸腺、血液中的也有少量的表達。ELISA的方法測定了nm2突變體和野生型家蠶體內(nèi)蛻皮激素的滴度,發(fā)現(xiàn)突變體內(nèi)蛻皮激素的滴度顯著低于野生型,用20E、膽固醇和7-脫氫膽固醇對突變體進行添食,可以使大部分突變體在二齡入眠蛻皮,但拯救后的突變體大都只能發(fā)育至四齡。野生型二齡盛食期家蠶添食20E、環(huán)己酰亞胺綜合分析發(fā)現(xiàn)BmCPG10的表達與蛻皮激素的滴度有負相關的趨勢?v觀上述研究,我們推測BmCPG10基因突變后可能影響了家蠶對植物甾醇類的吸收利用,造成突變體內(nèi)合成蛻皮激素的原材料膽固醇不足,引起蛻皮激素滴度降低,導致家蠶不能正常入眠蛻皮。五、突變型和野生型二齡將眠蠶表皮蛋白質(zhì)組學比較分析采用蛋白質(zhì)雙向電泳技術分析了nm2突變體和野生型家蠶表皮蛋白質(zhì)的表達差異,其中一個蛋白點在突變體中的表達量高于野生型,經(jīng)質(zhì)譜鑒定,該蛋白點是由BmCP-like基因編碼的一種半胱氨酸蛋白酶樣的蛋白,熒光定量PCR分析顯示該基因在突變體中轉錄水平的相對表達量也顯著高于野生型,與蛋白質(zhì)水平的表達一致;時期表達譜表明BmCP-like基因轉錄水平的表達在家蠶1-3齡期的起蠶和眠蠶高,而在將眠蠶中低,但在4齡盛食期較高,將眠和眠蠶中低;組織表達譜顯示BmCP-like基因在表皮中的表達量較高,而在中腸和血淋巴中的表達量較低;克隆測序發(fā)現(xiàn)突變體中該基因ORF的序列與野生型一致,在野生型家蠶二齡盛食期對該基因進行RNAi,造成較高的死亡率,存活下來的兩頭家蠶也在注射點周圍形成黑斑,推斷該基因可能參與到家蠶的免疫系統(tǒng),其高表達可能是為了抵御BmCPG10基因突變造成的不利于家蠶的生長因素。本研究通過對二齡不眠蠶突變產(chǎn)生的分子機制解析,有助于深入了解蛻皮激素對家蠶生長發(fā)育的調(diào)控機制,并為利用家蠶功能基因防治鱗翅目害蟲提供新思路。
[Abstract]:Silkworm (Bombyx mori), as an important economic Lepidoptera, has a special research value and has become an important experimental material. A large number of functional studies on genes and related basic research achievements have been accumulated in the earlier period. The silkworm has been developed into a model organism for the study of Lepidoptera. Breeding insects, molting is the important physiological process of its growth, development and metamorphosis, which is necessary for the growth and development of the silkworm. The two instar non-molting in the 2nd instar (Nm2) of silkworm is developed to death after the dormancy period of the silkworm. It is a new dormant silkworm mutant found in the silkworm species resource C603. The genetic analysis of the mutant was carried out. The Nm2 gene was located and cloned by the method of graph cloning, and the genetic linkage map was constructed. The expression analysis and functional verification of the candidate genes were carried out by using qRT-PCR, 2-DE, RNAi, ecdysone and cycloheximide, in order to explain the molecular mechanism of the mutant. The results are as follows: 1. The genetic analysis of the Nm2 mutant of the silkworm, the two instar silkworm mutant is a natural mutant obtained from the silkworm variety resource C603. The mutant can sleep all normal at the 1 age, and the skin is smooth and luster at the age of 2. The genetic analysis showed that the mutation was controlled by a recessive gene on autosomes with a recessive homozygous gene (nm2nm2) lethal. Two, Nm2 mutation gene was located to construct P1, P2, F1, BC1F and BC1M populations, and the SSR polymorphism molecular markers on each chain of the silkworm were screened by P1, F1 and P2, and then respectively, respectively. 2 types of normal and mutant individuals in the isolated BC1F and BC1M populations were tested. 10 two age non sleeping silkworm mutants and 10 normal individuals in the same moth region of the BC1F population were used as linkage analysis. The results showed that the Nm2 gene was located in the fifth linkage group of the silkworm, and the fine location of the 594 mutant individuals in the BC1M population showed the Nm2 base. Between the polymorphic markers S2529-27 and S2529-32, the two polymorphic markers were about 275.6kb, including 13 candidate genes. Three, the Nm2 mutation gene was identified using the RT-PCR method to compare the transcriptional level of the 13 candidate genes, and BMgn002601 and BMgn002602 were expressed between the normal and the mutant individuals. In order to further determine the main effect genes that cause two years of sleep, the ORF of two genes was cloned, and the ORF of the BMgn002601 was found to be no difference between the wild type and the mutant, while the BMgn002602 ORF in its functional area was missing the RNAi test of BMgn002602 in the BMgn002602, and the expression of BMgn002601 at the transcriptional level was reflected by the BMgn002602 expression. The expression of BMgn002601 at the transcriptional level increased with the decrease of BMgn002602 expression, and after RNAi of BMgn002602, the sleeping time of the two age silkworm could be delayed by 48h-72h. and therefore preliminarily deduced that BMgn002602 was the main gene of Nm2 mutation,.BMgn002602, a gene encoding the pekp of the silkworm, which was cloned to obtain BmCPG10. On the basis of the gene ORF sequence, the 3 'UTR, 5' UTR sequence and the promoter sequence of the BMgn002602 gene were obtained by RACE and cloned sequencing. In the mutant silkworm, the gene 5 'UTR and the promoter are in accordance with the wild type, and the 3' UTR sequence is different from the wild type. Four, the expression of the Nm2 mutation gene and its functional verification use fluorescence quantitative PC. The expression profiles and tissue expression profiles of the BmCPG10 gene in the wild type silkworm were measured by R. The.BmCPG10 gene was expressed in the silkworm, silkworm, silkworm, silkworm and the silkworm, while the larvae were high in the silkworm or high feeding period. The expression of the gene was reduced in the dormancy period or in the dormancy period of the silkworm, and the BmCPG10 based on the epidermis, the head and the trachea was highly expressed. In the midgut, martensite, martensite, anterior thymus, and blood, a small amount of.ELISA was also used to determine the titer of ecdysone in the Nm2 mutant and the wild type silkworm. It was found that the titer of the ecdysone in the mutant was significantly lower than that in the wild type. The mutants were fed with 20E, cholesterol and 7- dehydrogenase cholesterol, which could make most of the mutants in two When the age was sleeping and molting, but most of the mutants after the rescue could only develop to four years old. The wild type two years old silkworm feeding 20E, cycloheximide comprehensive analysis found that the expression of BmCPG10 and the titer of ecdysone have a negative correlation. We speculate that the mutation of BmCPG10 gene may affect the silkworm sterols. Absorption and utilization resulted in the deficiency of cholesterol in the raw material of ecdysone in the mutant body and the decrease of the titer of ecdysone, which resulted in the inability of the silkworm to sleep molting normally. Five, the comparative analysis of the proteomics of the mutant and wild type two years old silkworm epidermis analyzed the Nm2 mutants and the eggs of the wild type silkworm. The expression of white matter in the mutant was higher than that of the wild type. The protein point was a cysteine protease like protein encoded by the BmCP-like gene by mass spectrometry. The fluorescence quantitative PCR analysis showed that the relative expression of the gene in the mutant was significantly higher than that of the wild type, and the protein was significantly higher than that of the wild type. The expression of the level of the BmCP-like gene showed that the expression of the transcriptional level of the gene was higher in the 1-3 instar of the silkworm, but lower in the dormant silkworm, but higher in the 4 age feeding period, and lower in the sleeping and sleeping silkworms. The expression of the BmCP-like gene in the epidermis was higher, while the expression in the midgut and hemolymph was expressed in the tissue expression spectrum. It was found that the sequence of ORF in the mutant was consistent with the wild type, and the gene was RNAi in the two age of the wild type silkworm, which resulted in a high death rate. The two silkworm, which survived, also formed a black spot around the injection point. It was concluded that the gene may be involved in the immune system of the silkworm. The high expression of the gene may be for the sake of the silkworm. This study is helpful to understand the regulation mechanism of ecdysone on the growth and development of silkworm, and provide new ideas for the use of the functional genes of the silkworm to prevent and control the insect pests of the Bombyx mori by analyzing the molecular mechanism of the mutation of the silkworm, which is caused by the mutation of the BmCPG10 gene.
【學位授予單位】:江蘇科技大學
【學位級別】:博士
【學位授予年份】:2016
【分類號】:S881.2

【相似文獻】

相關期刊論文 前10條

1 梁乃亭,魏玉波,布哈麗且木;水稻超綠突變體“綠花舞”[J];上海農(nóng)業(yè)學報;2002年S1期

2 楊朝柱;李春壽;舒小麗;張志轉;張磊;趙海軍;馬傳喜;吳殿星;;富含抗性淀粉水稻突變體的淀粉特性[J];中國水稻科學;2005年06期

3 張煥麗;郭晉太;黃江濤;朱永;韓建明;楊愛國;張俊平;郭瑛;;辣椒黃綠苗突變體9906M的選育及利用[J];辣椒雜志;2006年01期

4 郝中娜;張紅志;陶榮祥;;水稻類病斑突變體的初步研究[J];核農(nóng)學報;2007年04期

5 韋存虛;謝佩松;周衛(wèi)東;陳義芳;嚴長杰;;水稻脆性突變體葉的解剖結構和化學特性[J];作物學報;2008年08期

6 ;全世界共200000份水稻突變體可供科學研究[J];分子植物育種;2009年02期

7 王立豐;陳月異;;白條紋水稻突變體的光合特性分析[J];熱帶作物學報;2010年12期

8 ;中國科學家從玉米中提取出抗艾蛋白酶突變體[J];廣西科學;2011年01期

9 張水金;鄭軼;朱永生;楊東;涂詩航;周鵬;鄭家團;黃庭旭;;水稻脆性突變體研究進展[J];福建農(nóng)業(yè)學報;2011年05期

10 李金軍;潘日定;陸金根;高榮村;;水稻無種子類突變體的保存方法研究[J];中國稻米;2013年02期

相關會議論文 前10條

1 易小平;陳芳遠;盧升安;周開達;;空間環(huán)境誘發(fā)水稻突變體特異親和性研究[A];面向21世紀的科技進步與社會經(jīng)濟發(fā)展(上冊)[C];1999年

2 戴新賓;張榮銑;許長成;匡廷云;;水稻葉綠素b減少突變體的光抑制特性研究[A];全國植物光合作用、光生物學及其相關的分子生物學學術研討會論文摘要匯編[C];2001年

3 金衛(wèi)華;曹軍衛(wèi);姚保利;雷銘;;細菌視紫紅質(zhì)多突變體的構建及其功能研究[A];第二屆中國青年學者微生物遺傳學學術研討會論文集[C];2006年

4 胡天岑;王奎鋒;李連維;陳靜;蔣華良;沈旭;;SARS冠狀病毒3CL蛋白酶突變體的結構對其聚合-活性關系的提示[A];中國晶體學會第四屆全國會員代表大會暨學術會議學術論文摘要集[C];2008年

5 李鵬麗;王寧寧;;微型番茄黃葉突變體的獲得與鑒定[A];中國植物生理學會第十次會員代表大會暨全國學術年會論文摘要匯編[C];2009年

6 程備久;mail.hf.ah.cn);李展;mail.hf.ah.cn);朱蘇文;mail.hf.ah.cn);李純;mail.hf.ah.cn);李培金;mail.hf.ah.cn);謝傳曉;mail.hf.ah.cn);;玉米對生突變體的遺傳與分子標記研究[A];第八屆全國激光生物學學術會議暨《激光生物學》創(chuàng)刊十周年慶祝會會議指南及論文摘要[C];2002年

7 許曉明;張榮銑;;水稻葉綠素缺乏突變體的吸收光能分配特性[A];中國植物生理學會全國學術年會暨成立40周年慶祝大會學術論文摘要匯編[C];2003年

8 林植芳;彭長連;徐信蘭;林桂珠;張景六;;兩個新的水稻缺葉綠素b突變體光合作用的熱穩(wěn)定性[A];中國植物生理學會第九次全國會議論文摘要匯編[C];2004年

9 魏玉波;梁乃亭;布哈麗且木;;水稻永綠突變體及應用價值[A];中國科協(xié)2005年學術年會論文集——核科技、核應用、核經(jīng)濟論壇[C];2005年

10 夏宗薌;鄔鍵;甘建華;黃仲賢;;細胞色素b_5的一系列突變體的晶體結構及其與性質(zhì)、功能的關系[A];第九次全國生物物理大會學術會議論文摘要集[C];2002年

相關重要報紙文章 前3條

1 記者 張克;我科學家發(fā)現(xiàn)水稻衰老調(diào)控分子機制[N];科技日報;2014年

2 錢海豐 編譯;植物耐鹽基因的研究[N];中國高新技術產(chǎn)業(yè)導報;2002年

3 記者 馮衛(wèi)東;美發(fā)現(xiàn)能控制小鼠胖瘦的基因[N];科技日報;2007年

相關博士學位論文 前10條

1 李成;誘導超氧化物歧化酶錯誤折疊的因素及其分子機制[D];武漢大學;2012年

2 張子棟;透明顫菌血紅蛋白及其突變體蛋白對芳香族污染物清除作用的實驗研究[D];東北林業(yè)大學;2015年

3 Syed Noor Muhammad Shah;黃瓜品系9930誘導突變體的研究[D];西北農(nóng)林科技大學;2015年

4 康樂群;家蠶新突變體4齡幼蟲致死基因的定位克隆及功能研究[D];江蘇科技大學;2015年

5 史貴霞;大豆子葉折疊突變體cco的轉錄組分析及相關基因的功能研究[D];南京農(nóng)業(yè)大學;2014年

6 胡運高;直立重穗突變體的遺傳分析、候選基因克隆與育種利用[D];四川農(nóng)業(yè)大學;2015年

7 TAREK MOHAMED AHMED SOLIMAN(羅大力);通過γ-射線輻射處理菊花外植體篩選花色和花型突變體[D];中國農(nóng)業(yè)大學;2014年

8 王濵;斑馬魚造血突變體的大規(guī)模篩選以及髓系過氧化物酶缺陷突變體smu681的基因定位克隆與功能研究[D];南方醫(yī)科大學;2014年

9 劉逢舉;陸地棉極短纖維突變體的遺傳、精細定位與表達譜分析[D];南京農(nóng)業(yè)大學;2010年

10 王旭;番茄rin突變體胎萌的生理機制及rin在胎萌中的作用[D];東北農(nóng)業(yè)大學;2016年

相關碩士學位論文 前10條

1 李紅;采用分子動力學模擬探究VWF-A1突變體G561S的親和力變化機制[D];華南理工大學;2015年

2 谷慧英;芥菜開花整合子SOC1與開花抑制因子SVP、FLC蛋白相互作用[D];西南大學;2015年

3 蔣發(fā)明;斑馬魚消化器官突變體的遺傳篩選和Ubel蛋白的原核表達純化及抗體生產(chǎn)[D];西南大學;2015年

4 王帆;葉綠體體積和數(shù)目的改變對擬南芥抗逆性的影響[D];河北師范大學;2011年

5 丁正潔;擬南芥葉綠體J-蛋白突變體鑒定及功能初探[D];河北師范大學;2011年

6 朱玲;水稻長護穎突變體和條紋葉突變體的基因鑒定與qRT-PCR表達分析[D];四川農(nóng)業(yè)大學;2015年

7 秦亞芝;一個水稻分蘗角度突變體的遺傳分析與精細定位[D];四川農(nóng)業(yè)大學;2015年

8 任云;一個水稻小粒矮稈突變體的遺傳分析與基因定位[D];四川農(nóng)業(yè)大學;2014年

9 李進;一份水稻葉尖枯萎突變體xynln的表型分析和基因定位[D];四川農(nóng)業(yè)大學;2015年

10 陳華偉;一份輻射誘變玉米雄性不育突變體的遺傳鑒定[D];四川農(nóng)業(yè)大學;2015年

,

本文編號:2160552

資料下載
論文發(fā)表

本文鏈接:http://sikaile.net/shoufeilunwen/nykjbs/2160552.html


Copyright(c)文論論文網(wǎng)All Rights Reserved | 網(wǎng)站地圖 |

版權申明:資料由用戶e9196***提供,本站僅收錄摘要或目錄,作者需要刪除請E-mail郵箱bigeng88@qq.com