鳶尾屬植物遺傳多樣性評(píng)價(jià)及干旱高溫脅迫生理響應(yīng)機(jī)制
[Abstract]:Iris L. is one of the most species of all genera of the family irisfamily (Iridaceae). According to the statistics, there are more than 300 species of iris. The climate zone of the genus Iris is mainly in the north temperate zone, which is distributed in Asia, Europe and North America. China is also one of the distribution centers of the Iris plants. There are 64 species, 13 varieties, and 1 subspecies and 6 variants. Iris is a perennial herb with rich color (monochromatic color) and one of the most famous perennial flowers in the world. With the increase of Iris plants, the genetic background of iris is more complex. In this study, the genetic diversity and relationship of 38 species of Iris species and species were evaluated by two molecular markers combined with morphological markers combined with ISSR and SRAP. In addition, the physiological responses and molecular machines under drought stress were measured in combination with the production and application of Iris plants. The system of heat resistance and drought resistance evaluation of Iris plants was established, and the heat resistance and drought resistance of the experimental materials were evaluated. The main results of this study were as follows: 1, the variation coefficient of the 29 phenotypic characters observed in iris was large. The principal component analysis of phenotypic traits was based on the first classification of phenotypic traits. First, the classification of flower organs should be considered, followed by the classification of the plant type, the growth of the vegetative organs and the appendages on the petals. The results of the principal component analysis also reflect that the concentration of the principal component contribution rate of the phenotypic traits is not obvious, and the cumulative contribution rate of the phenotypic traits is slow. Because of the more scattered reasons, the characters of the characters belong to multiple categories, which also shows that the diversity of the phenotypic traits of the iris is very obvious. This is the main reason for the existence of.2, ISSR and SRAP, which are all two of the polymorphic bands of 100%, but the number of bands detected by SRAP is higher than that of ISSR, and two methods are found. The PIC value of polymorphic content is 1. It shows that the genetic diversity of iris germplasm is large and has very high genetic diversity at the molecular level. In addition, the two molecular markers have high consistency in the genetic diversity analysis of Iris plants, and the method of combining ISSR and SRAP is better than single ISSR or SRAP molecular markers. The results of genetic diversity analysis of plants are more close to the results of phenotypic classification. The combination of two methods of ISSR and SRAP is used to cluster molecular markers, and the genetic distance matrix is used to test the correlation coefficient r=0.8052 by Mantel test. It can be seen that the results of the combination of the two methods are more reliable, and can also better reflect the remains of the iris plant. The transmission structure can provide reference for other 1ii related studies. A lot of previous studies have shown that there are some obstacles in the interspecific hybridization of iris, and the hybrid seed setting rate is very low or not strong. In this study, the genetic distance of the German iris' Gala Madrid 'and' Nibelungen 'in the beard kite is far from the other German iris varieties. The three types of molecular markers are all clustered with the beard iris. Therefore, it is presumed that these two kinds of iris are likely to have the genetic background of the beard irises. They can be used as the dominant parent of the hybrid irises between the irises and the bearded irises to carry out the germplasm innovation.4, and the contention of the subgenus of the coronal appendage of the chicken in the classification. According to this study, it supports the classification status of the subgenera according to the Rodionenko system. In addition, the three methods of halophilic iris in the genus Iris are clustered together with non appendage subgenera. It is obvious that it is not of great significance to make iris iris as a subgenus as a single subgenus. In addition, the subgenus of appendages, iris iris, Huang Changpu and Louisiana irises are separated into subgroups separately, and separate from other irises. According to their morphological differences, the subgenus of non appendages can be divided into several groups of.5, and different iris varieties (species) can determine partial oxidation under high temperature and drought stress. The physiological and biochemical indexes of enzymes and non enzyme active substances were evaluated by principal component analysis and membership function method respectively. The results showed that the 4 indexes of conductance damage rate (x1), chlorophyll (x3), soluble sugar (x4) and malondialdehyde (x5) were more related to the drought resistance of Iris Plants, SOD The 5 indexes of activity (x1), POD activity (x2), chlorophyll (x3), soluble protein (x4) and malondialdehyde (x5) were highly correlated with the heat tolerance of Iris plants. The optimum regression equation for drought resistance and heat tolerance evaluation of Iris plants was established by stepwise regression method combined with high correlation physiological and biochemical indexes. The optimal regression equation of drought resistance: D=-439.27+1.7 44x1+4.913x3+0.5822x4+2.6369x5, the optimum heat tolerance equation: the drought resistance of the 10 varieties (species) of D=29.667-0.208x1-2.502 x2+0.405x3-1.742 x4-0.036 x5., based on the optimum regression equation of drought resistance and heat resistance, is in sequence of "gold dolls", 'flute sound', 'soul blue bridge', German iris, flat bamboo orchid, and Siberia iris. Iris, 'Black Knight', Huang Changpu and flower calamus; the order of heat resistance from strong to weak: Flower calamus, Huang Changpu, iris, bamboo orchid, 'flute', 'Black Knight', 'soul blue bridge', 'gold doll', Siberia iris and German iris.6, respectively sifting from 4 German irises with a higher appreciation and German iris series. 2 relatively poor heat-resistant 'gold dolls' and German irises were treated by Ca Cl2, and 2 varieties with relatively good heat resistance were treated by Ca2+'s antagonist La Cl3. The result was that Ca2+ was used to regulate the heat resistance of iris under high temperature stress. The conclusion was that Ca Cl2 increased the high temperature obviously. The concentration of soluble protein in the gold dolls and the leaves of German iris may be related to the production of heat shock protein mediated by Ca2+ signal, which can keep the resistance to high temperature in a short time, but the time of high temperature stress exceeds its tolerance, while La Cl3 is a Ca2+ blocker to the flute and the sound of the flute. The heat resistance of the Black Knight leaves is significant. Therefore, it is speculated that the flute and the Black Knight rely on the Ca2+ signal to produce heat resistance.7. According to the conserved region of the heat shock factor gene of the gene bank model plant, the primer sequence is designed and the segments of the iris heat shock factor gene are obtained by PCR cloning, and the different iris are detected by real time fluorescence quantitative PCR The transcriptional level of heat shock factor gene in different temperature stress and high temperature stress time was observed. The results showed that the transcriptional level of the flute and the Black Knight heat shock factor was higher than that of the poor heat resistant gold dolls and German irises, and the Ca2+ signal was involved in the transcriptional expression of the heat shock factor of the leaves of the four irises Regulation and control.
【學(xué)位授予單位】:華中農(nóng)業(yè)大學(xué)
【學(xué)位級(jí)別】:博士
【學(xué)位授予年份】:2016
【分類號(hào)】:S682.19
【相似文獻(xiàn)】
相關(guān)期刊論文 前10條
1 卜秀蓮;張瑞麟;樊祥昌;高曉瑩;張魯南;張寶恩;;鳶尾屬植物在烏魯木齊地區(qū)的引種及園林應(yīng)用[J];新疆農(nóng)業(yè)科學(xué);2007年05期
2 張巧平;尹增芳;何禎祥;;中國鳶尾屬植物研究概況[J];安徽農(nóng)業(yè)科學(xué);2008年09期
3 孫海龍;劉冰;;鳶尾屬植物國內(nèi)外研究狀況[J];中國林副特產(chǎn);2009年03期
4 云雪林;楊碧仙;;貴州鳶尾屬植物種質(zhì)資源及觀賞藥用價(jià)值[J];貴陽學(xué)院學(xué)報(bào)(自然科學(xué)版);2009年03期
5 宮偉;韓輝;羅春雨;;黑龍江省鳶尾屬植物資源及應(yīng)用價(jià)值探討[J];國土與自然資源研究;2012年06期
6 許玉鳳;王文元;孫曉梅;李楠;王雷;;鳶尾屬植物的研究概況[J];安徽農(nóng)業(yè)科學(xué);2006年24期
7 牟少華;郄光發(fā);彭鎮(zhèn)華;孫振元;殷繼艷;;我國鳶尾屬植物種質(zhì)資源的研究與利用[J];草業(yè)科學(xué);2007年08期
8 蘆建國;張玉;趙燕燕;;南京、杭州地區(qū)的鳶尾屬植物資源及其應(yīng)用[J];農(nóng)業(yè)科技與信息(現(xiàn)代園林);2007年12期
9 張好好;蔣昌華;劉慶華;肖月娥;秦俊;黃衛(wèi)昌;胡永紅;;遮蔭對(duì)鳶尾屬品種生理和形態(tài)特征的影響[J];東北林業(yè)大學(xué)學(xué)報(bào);2009年09期
10 張好好;蔣昌華;劉慶華;秦俊;黃衛(wèi)昌;胡永紅;;鹽脅迫下4個(gè)鳶尾屬品種部分生理特性的研究[J];華北農(nóng)學(xué)報(bào);2009年S1期
相關(guān)會(huì)議論文 前10條
1 沈云光;馮寶鈞;管開云;;云南鳶尾屬植物的引種栽培[A];中國植物學(xué)會(huì)植物園分會(huì)第十六次學(xué)術(shù)討論會(huì)論文集[C];2001年
2 孫國峰;張金政;石雷;;鳶尾屬植物的引種馴化研究[A];中國植物學(xué)會(huì)七十周年年會(huì)論文摘要匯編(1933—2003)[C];2003年
3 姬常平;張?zhí)熘?楊濤;王金剛;車代弟;;我國東北地區(qū)鳶尾屬野生資源及其應(yīng)用的初探[A];中國觀賞園藝研究進(jìn)展2012[C];2012年
4 張好好;蔣昌華;秦俊;肖月娥;胡永紅;;鳶尾屬部分品種抗逆性研究[A];第二屆上海市植物生理學(xué)青年學(xué)術(shù)研討會(huì)論文摘要集[C];2008年
5 ;南京地區(qū)鳶尾屬植物的應(yīng)用及春季抗旱性研究[A];全國旱情監(jiān)測(cè)技術(shù)與抗旱減災(zāi)措施論文集[C];2009年
6 郭彩霞;董艷芳;童俊;周媛;;10種鳶尾屬植物光合作用的光響應(yīng)比較[A];中國觀賞園藝研究進(jìn)展2012[C];2012年
7 謝明云;汪鴻江;黃蘇珍;;中國鳶尾屬植物野生資源的調(diào)查、引種及利用[A];第六屆全國系統(tǒng)與進(jìn)化植物學(xué)青年學(xué)術(shù)研討會(huì)論文摘要集[C];2000年
8 牟少華;孫振元;彭鎮(zhèn)華;高志民;郭起榮;;部分鳶尾屬植物的葉綠體DNA分析[A];中國觀賞園藝研究進(jìn)展(2010)[C];2010年
9 秦民堅(jiān);徐珞珊;田中俊弘;王強(qiáng);徐國鈞;;中國鳶尾屬植物異黃酮類成分的分布與系統(tǒng)學(xué)意義[A];第六屆全國系統(tǒng)與進(jìn)化植物學(xué)青年學(xué)術(shù)研討會(huì)論文摘要集[C];2000年
10 郭彩霞;董艷芳;周媛;童俊;陳法志;徐冬云;;基于AHP的十種鳶尾屬植物在武漢地區(qū)的應(yīng)用評(píng)價(jià)[A];中國觀賞園藝研究進(jìn)展(2013)[C];2013年
相關(guān)重要報(bào)紙文章 前1條
1 上海上房園藝有限公司 孫磊;優(yōu)美地被愛麗絲之戀[N];中國花卉報(bào);2010年
相關(guān)博士學(xué)位論文 前6條
1 郭彩霞;鳶尾屬植物遺傳多樣性評(píng)價(jià)及干旱高溫脅迫生理響應(yīng)機(jī)制[D];華中農(nóng)業(yè)大學(xué);2016年
2 孫明洲;黑水銀蓮花、燕子花的遺傳結(jié)構(gòu)和銀蓮花屬、鳶尾屬的親緣地理學(xué)研究[D];東北師范大學(xué);2012年
3 黃蘇珍;鳶尾屬(Iris L.)部分植物資源評(píng)價(jià)及種質(zhì)創(chuàng)新研究[D];南京農(nóng)業(yè)大學(xué);2004年
4 韓玉林;鳶尾屬(Iris L.)植物鉛積累、耐性及污染土壤修復(fù)潛力研究[D];南京農(nóng)業(yè)大學(xué);2007年
5 余小芳;四川鳶尾屬植物的系統(tǒng)學(xué)及種子休眠與萌發(fā)特性研究[D];四川農(nóng)業(yè)大學(xué);2009年
6 王玲;鳶尾屬部分種發(fā)育生物學(xué)與系統(tǒng)演化的研究[D];東北林業(yè)大學(xué);2005年
相關(guān)碩士學(xué)位論文 前10條
1 仲軼;基于多基因組的鳶尾屬部分種的系統(tǒng)分類研究[D];東北林業(yè)大學(xué);2010年
2 孫穎;東北野生鳶尾屬6種植物種子生物學(xué)及種苗發(fā)育過程的研究[D];東北林業(yè)大學(xué);2004年
3 趙燕燕;鳶尾屬幾種植物的抗旱性研究[D];南京林業(yè)大學(xué);2007年
4 韓冠苒;鳶尾屬3種植物對(duì)富營養(yǎng)化水體凈化及生理響應(yīng)[D];南京林業(yè)大學(xué);2010年
5 王子鳳;鳶尾屬6種植物對(duì)干旱脅迫的響應(yīng)[D];南京林業(yè)大學(xué);2009年
6 馬晶晶;5種鳶尾屬植物耐鹽及其機(jī)理研究[D];南京農(nóng)業(yè)大學(xué);2012年
7 劉國華;幾種鳶尾屬(Iris L.)植物耐蔭性的研究[D];南京林業(yè)大學(xué);2008年
8 李雪瑩;鳶尾屬(Iris.L)部分植物組織培養(yǎng)及耐蔭性的研究[D];南京林業(yè)大學(xué);2006年
9 盧海英;中國北方8種鳶尾屬植物ITS序列分析及其分子系統(tǒng)學(xué)意義的研究[D];東北師范大學(xué);2006年
10 孫明洲;用結(jié)構(gòu)學(xué)方法對(duì)中國北方鳶尾屬植物的分類學(xué)研究[D];東北師范大學(xué);2004年
,本文編號(hào):2123092
本文鏈接:http://sikaile.net/shoufeilunwen/nykjbs/2123092.html