大白菜現(xiàn)蕾前葉色轉(zhuǎn)變過(guò)程中蛋白組學(xué)分析及BrTUAs鑒定
本文選題:大白菜 + 抽薹; 參考:《東北農(nóng)業(yè)大學(xué)》2016年博士論文
【摘要】:大白菜〔Brassica campestris L.ssp.pekinensis(Lour)Olsson〕起源于我國(guó),是十字花科蕓薹屬中重要的蔬菜作物之一,是我國(guó)各類蔬菜中栽培面積最大,栽培歷史悠久的一種蔬菜作物。大白菜因其具有產(chǎn)量高、生產(chǎn)成本低、種植方法簡(jiǎn)單、耐貯運(yùn)強(qiáng),是我國(guó)北方城鄉(xiāng)人民的“當(dāng)家菜”,在菜籃子工程中具有重要的地位。近年來(lái),大白菜反季節(jié)栽培生產(chǎn)發(fā)展迅速,春季大白菜的種植面積不斷擴(kuò)大,但由于栽培管理不當(dāng)及氣候因素的影響,常有先期抽薹現(xiàn)象的發(fā)生。先期抽薹是指葉球尚未充分形成之前發(fā)生的抽薹現(xiàn)象,葉球失去商品價(jià)值和食用價(jià)值,導(dǎo)致大幅度減產(chǎn)絕收,給生產(chǎn)造成重大損失。在我國(guó)春季及高海拔地區(qū)的夏白菜生產(chǎn)中,先期抽薹常常成為困擾生產(chǎn)的一道難題。同時(shí),在種子生產(chǎn)、加代繁殖過(guò)程中,經(jīng)常遇到不抽薹或花期延后現(xiàn)象,嚴(yán)重影響種子產(chǎn)量和質(zhì)量。因此研究大白菜開花的分子遺傳機(jī)理,尤其是研究抽薹相關(guān)基因調(diào)控,對(duì)于大白菜良種繁育和合理栽培調(diào)控具有重要意義。我們?cè)谟N實(shí)踐中發(fā)現(xiàn),大白菜在花芽分化后、抽薹前表現(xiàn)出一個(gè)葉色轉(zhuǎn)變過(guò)程,葉片顏色從鮮亮的綠色轉(zhuǎn)為沒(méi)有光澤的暗灰色后花莖就會(huì)伸長(zhǎng)、抽薹,葉色轉(zhuǎn)變似乎是大白菜抽薹的一個(gè)生理信號(hào)。前期分析了激素、色素含量變化與葉色轉(zhuǎn)變的關(guān)系及葉色轉(zhuǎn)變過(guò)程中AP1、LEFY、FT等基因的表達(dá)變化。本試驗(yàn)力圖在已有的基礎(chǔ)上,通過(guò)葉色轉(zhuǎn)變過(guò)程蛋白質(zhì)組學(xué)分析,并對(duì)相關(guān)基因表達(dá)進(jìn)行進(jìn)一步的鑒定,加深對(duì)大白菜發(fā)育分子生物學(xué)機(jī)制的認(rèn)識(shí),以期為大白菜抽薹開花分子調(diào)控提供更多的理論依據(jù)。本試驗(yàn)取得如下結(jié)論:(1)試驗(yàn)以C30自交系為試驗(yàn)材料,利用雙向電泳技術(shù)比較大白菜葉色轉(zhuǎn)變前后植株生長(zhǎng)點(diǎn)部位蛋白組分變化,發(fā)現(xiàn)葉色轉(zhuǎn)變前后特異表達(dá)蛋白點(diǎn)35個(gè),差異表達(dá)蛋白點(diǎn)32個(gè)。.對(duì)17個(gè)邊界清晰、表達(dá)量較高的蛋白點(diǎn)進(jìn)行MALDI-TOF/MS質(zhì)譜技術(shù)分析,鑒定出4個(gè)有信息價(jià)值的差異蛋白點(diǎn),分別為V型H+轉(zhuǎn)運(yùn)ATP酶E1亞基、Rubisco的大亞基、S-腺苷甲硫氨酸合成酶和微管蛋白α-2。(2)用目標(biāo)蛋白推測(cè)的核苷酸序列在大白菜基因組數(shù)據(jù)庫(kù)blast分析后設(shè)計(jì)特異引物,熒光定量PCR分析表明BrVHA-E1、BrSAMS、BrrbcL和BrTUA6在大白菜葉色轉(zhuǎn)變前后表達(dá)發(fā)生明顯變化,并與蛋白組學(xué)分析結(jié)果一致,可能參與了抽薹調(diào)控和發(fā)育。(3)以擬南芥6個(gè)TUA基因氨基酸序列作為查詢種子序列,在大白菜基因組數(shù)據(jù)庫(kù)中在線運(yùn)行Blastp,共發(fā)現(xiàn)12個(gè)BrTUA。.通過(guò)對(duì)12個(gè)BrTUA基因結(jié)構(gòu)、進(jìn)化和功能預(yù)測(cè),發(fā)現(xiàn)BrTUA基因長(zhǎng)度、內(nèi)含子、外顯子和啟動(dòng)子區(qū)域伴隨基因組進(jìn)化發(fā)生了較大變化;12個(gè)BrTUA中僅有5個(gè)編碼完整的α-微管蛋白。(4)TUA系統(tǒng)發(fā)育分析,表明BrTUA與AtTUA、BnTUA親緣關(guān)系較近,TUA的進(jìn)化與物種進(jìn)化同步。(5)通過(guò)對(duì)5個(gè)編碼完整的α-微管蛋白的BrTUA啟動(dòng)子區(qū)域順式作用元件分析,在起始密碼子上游1.5 kb區(qū)域,共發(fā)現(xiàn)27種類型、超過(guò)60個(gè)順式作用元件。BrTUA啟動(dòng)子區(qū)域有大量光周期反應(yīng)元件;不同BrTUA中低溫反應(yīng)原件、激素反應(yīng)相關(guān)元件差異較大;5個(gè)BrTUA啟動(dòng)子區(qū)域都有一個(gè)或多個(gè)組織特異性表達(dá)元件。推測(cè)不同的α-tubulin在大白菜生長(zhǎng)發(fā)育調(diào)控中扮演者不同角色。(6)5個(gè)編碼完整的α-微管蛋白的BrTUA呈現(xiàn)出時(shí)空表達(dá)的差異;尤其在春化前后、現(xiàn)蕾前的葉色轉(zhuǎn)變過(guò)程中,BrTUA表達(dá)差異較大,說(shuō)明BrTUA參與了大白菜抽薹開花調(diào)控。(7)通過(guò)葉色轉(zhuǎn)變前施用外源物質(zhì)對(duì)大白菜抽薹開花的影響及BrTUA表達(dá)分析,確定春化后、葉色轉(zhuǎn)變前,向大白菜生長(zhǎng)點(diǎn)噴施微管敏感藥物紫杉醇及GA3和MJ,可調(diào)控BrTUA表達(dá)并實(shí)現(xiàn)對(duì)抽薹開花的調(diào)控。
[Abstract]:Chinese Cabbage [Brassica campestris L.ssp.pekinensis (Lour) Olsson], originated from China, is one of the most important vegetable crops in the Brassica genus of Cruciferae. It is one of the largest vegetable crops in our country and has a long history of cultivation. Chinese cabbage has high yield, low production cost, simple planting method and strong storage and transportation. The "dish" of the people in urban and rural areas in the north of China has an important position in the vegetable basket project. In recent years, the production and development of Chinese cabbage in the anti season cultivation and development are rapid, and the planting area of Chinese cabbage is expanding in spring. However, because of improper cultivation and the influence of climate factors, the phenomenon of bolting in Chang Youxian period. The bolting phenomenon occurred before the full formation, the leaf ball lost its commodity value and edible value, resulting in a great loss of yield and loss of production. In the production of Chinese cabbage in spring and high altitude areas in China, the early bolting is often a difficult problem to perplex production. It is important to study the molecular genetic mechanism of flowering of Chinese cabbage, especially to study the regulation of bolting related genes, which is of great significance to the breeding and rational cultivation and regulation of Chinese cabbage. After a leaf color transformation process, the leaf color from bright green to dark grey was extended, bolting and leaf color change seemed to be a physiological signal of bolting in Chinese cabbage. The relationship between the changes of the hormone, the change of pigment content and leaf color transformation and the expression of AP1, LEFY, FT in the process of leaf color transformation were analyzed. On the basis of the present experiment, we try to analyze the proteomic analysis of leaf color transformation process and further identify the related gene expression to deepen the understanding of the molecular biological mechanism of Chinese cabbage development so as to provide more theoretical basis for the regulation of bolting and flowering molecules in Chinese cabbage. The results are as follows: (1) the experiment is C3 0 the self inbred lines were used as experimental materials to compare the changes in the protein components of the plant growth points before and after the leaf color transformation of Chinese cabbage, and found that there were 35 specific protein points before and after the leaf color transformation, 32 differentially expressed protein points, and 17 distinct boundaries and high expression levels were analyzed by MALDI-TOF/MS mass spectrometry, and 4 of the protein points were identified. The difference protein points with information value are V type H+ transshipment ATP enzyme E1 subunit, Rubisco large subunit, S- adenosine methionine synthetase and microtubulin alpha -2. (2), and the specific nucleotide sequences are designed by the target protein in the genome database blast analysis of Chinese cabbage, and the fluorescence quantitative PCR analysis shows BrVHA-E1, BrSAMS, BrrbcL and. The expression of BrTUA6 before and after the leaf color transformation of Chinese cabbage was obviously changed, and was consistent with the results of proteomics analysis. (3) the 6 TUA gene amino acid sequences of Arabidopsis were used as the query seed sequence, and Blastp was transported online in the Chinese cabbage genome database. A total of 12 BrTUA.. Were found to pass to 12 BrTUA bases. Due to structural, evolutionary and functional prediction, the BrTUA gene length, introns, exons and promoter regions have been accompanied by great changes in genome evolution; only 5 intact alpha microtubules are encoded in the 12 BrTUA. (4) TUA phylogenetic analysis shows that the relationship between BrTUA and AtTUA, BnTUA is close, and the evolution of TUA is synchronized with the evolution of species. (5) through (5) After the analysis of cis acting elements in the BrTUA promoter region of 5 intact alpha microtubules, 27 types were found in the 1.5 KB region upstream of the starting codon, and a large number of photoperiod reaction elements were found in the.BrTUA promoter region of more than 60 cis acting elements; the hormone reaction related elements in different BrTUA were different; 5 There are one or more tissue specific expression elements in the BrTUA promoter region. It is speculated that different alpha -tubulin plays different roles in the growth and development regulation of Chinese cabbage. (6) the difference in temporal and spatial expression of the 5 encoding complete alpha microtubule BrTUA shows the difference in temporal and spatial expression, especially in the process of the leaf color transformation before and before the vernalization. The expression of BrTUA is poor. BrTUA participated in the regulation of bolting and flowering of Chinese cabbage. (7) the effect of exogenous substances on bolting and flowering of Chinese cabbage before leaf color transformation and analysis of BrTUA expression, after vernalization, before leaf color transformation, microtubule sensitive drug paclitaxel and GA3 and MJ were sprayed to the growth point of Chinese cabbage, and BrTUA expression could be regulated and bolting flowering was realized. Control.
【學(xué)位授予單位】:東北農(nóng)業(yè)大學(xué)
【學(xué)位級(jí)別】:博士
【學(xué)位授予年份】:2016
【分類號(hào)】:S634.1
【參考文獻(xiàn)】
相關(guān)期刊論文 前10條
1 李凌飛;彭建宗;王小菁;;非洲菊微管相關(guān)蛋白基因GMAP65-1功能分析[J];植物學(xué)報(bào);2015年01期
2 胡帥;肖文君;張騁;王萍;常洪平;王育;袁聰穎;陸秀濤;萬(wàn)捷;郭新紅;;成花素FT的調(diào)控運(yùn)輸及生理功能的研究進(jìn)展[J];生命科學(xué)研究;2014年06期
3 田云芳;袁秀云;崔波;蘇金樂(lè);;蕙蘭α微管蛋白基因的克隆與序列分析[J];河南農(nóng)業(yè)科學(xué);2014年06期
4 劉彬昕;王勇;陳典;韋賀遠(yuǎn);;洋蔥成花素基因AcFT的克隆與表達(dá)分析[J];園藝學(xué)報(bào);2014年05期
5 石玉波;張荻;申曉輝;王玲;卓麗環(huán);;百子蓮開花相關(guān)基因ApFT的克隆及表達(dá)分析[J];園藝學(xué)報(bào);2014年04期
6 肖旭峰;范淑英;;抽薹開花抑制因子FLC表觀遺傳調(diào)控研究進(jìn)展[J];中國(guó)蔬菜;2013年22期
7 秦成萌;楊延杰;林多;;植物生長(zhǎng)調(diào)節(jié)劑對(duì)不同蘿卜品種抽薹效應(yīng)的影響[J];吉林農(nóng)業(yè)科學(xué);2013年05期
8 劉倩倩;王康才;王乾;崔志偉;;低溫春化對(duì)菘藍(lán)體內(nèi)碳氮代謝的影響[J];中國(guó)中藥雜志;2013年10期
9 王曉麗;趙勇;張耀偉;;大白菜脫春化效果及脫春化前后DNA甲基化分析[J];中國(guó)蔬菜;2013年08期
10 潘丹丹;毛群飛;張金順;楊丹;趙福永;;油菜開花時(shí)間調(diào)控基因SVP的克隆與表達(dá)特性分析[J];華北農(nóng)學(xué)報(bào);2013年01期
相關(guān)博士學(xué)位論文 前2條
1 李藝;棉花脫葉信號(hào)轉(zhuǎn)導(dǎo)中的微管變化研究[D];中國(guó)農(nóng)業(yè)大學(xué);2014年
2 原玉香;白菜類作物抽薹開花的分子遺傳分析[D];中國(guó)農(nóng)業(yè)科學(xué)院;2008年
相關(guān)碩士學(xué)位論文 前4條
1 劉熔;特定基因甲基化研究方法建立及LEAFY基因甲基化與早實(shí)枳階段發(fā)育關(guān)系研究[D];華中農(nóng)業(yè)大學(xué);2009年
2 陳美珍;擬南芥ft-10突變體與野生型差異表達(dá)蛋白質(zhì)的初步研究[D];廈門大學(xué);2009年
3 陳思思;龍眼花芽成花逆轉(zhuǎn)的差異蛋白分析[D];福建農(nóng)林大學(xué);2008年
4 惠麥俠;大白菜耐抽薹性及其鑒定方法的研究[D];西北農(nóng)林科技大學(xué);2002年
,本文編號(hào):2054267
本文鏈接:http://sikaile.net/shoufeilunwen/nykjbs/2054267.html