稻秸甲烷乙醇聯(lián)合發(fā)酵技術(shù)研究
本文選題:稻秸 + 酸堿預(yù)處理; 參考:《華中農(nóng)業(yè)大學(xué)》2016年博士論文
【摘要】:由于秸稈沼氣工程的沼渣中仍殘留較高的纖維和有機(jī)物含量,對這部分殘余有機(jī)碳進(jìn)行回收利用,可大幅度提高原料利用率和能量轉(zhuǎn)化效率。針對目前較為成熟的厭氧發(fā)酵技術(shù)和纖維乙醇技術(shù),利用稻秸進(jìn)行沼氣和乙醇聯(lián)產(chǎn)以解決厭氧發(fā)酵工程中大量沼渣難以利用問題,及纖維乙醇過程中的原料成本問題,在聯(lián)產(chǎn)生物能源的同時,可實現(xiàn)生物質(zhì)全效降解。以酸堿濃度、溫度和時間為主要考察因素,研究了酸堿預(yù)處理條件對稻秸的降解和糖化產(chǎn)率的影響。結(jié)果表明堿濃度和溫度越高,半纖維素和木質(zhì)素去除率越高,半纖維素和木質(zhì)素的最高去除率分別為89.45%和88.92%;而酸預(yù)處理主要針對稻秸中的半纖維素,最高的半纖維素降解率為75.58%。從葡萄糖產(chǎn)率和有機(jī)物濃度來看,堿預(yù)處理的葡萄糖產(chǎn)率和有機(jī)物濃度明顯高于酸預(yù)處理,最優(yōu)的水解條件為2%濃度的NaOH,60℃和60h,在此條件下,葡萄糖產(chǎn)率為55.5%。另外,對于臭氧和氨水聯(lián)合預(yù)處理,隨著臭氧用量的增加,葡萄糖濃度先增加后降低,0.75g/g臭氧用量時葡萄糖濃度和還原糖濃度最高;與未處理組相比,氨水預(yù)處理4h的還原糖濃度提高了82.06%,而氨水預(yù)處理6h和8h的還原糖濃度無明顯提高,故適宜的臭氧氨水聯(lián)合預(yù)處理參數(shù)為臭氧用量0.75g/g和氨水預(yù)處理時間6h。采用厭氧消化和乙醇發(fā)酵聯(lián)合技術(shù)降解稻秸,提高生物能源產(chǎn)率,通過比較直接厭氧發(fā)酵、“乙醇甲烷”聯(lián)產(chǎn)、乙醇甲烷連續(xù)發(fā)酵和“甲烷乙醇”聯(lián)產(chǎn)四種工藝的沼氣產(chǎn)量、甲烷產(chǎn)量和乙醇產(chǎn)量,并根據(jù)木質(zhì)纖維素和單糖組成研究各工藝的木質(zhì)纖維素降解過程,結(jié)果表明乙醇甲烷聯(lián)合發(fā)酵模式具有一定優(yōu)勢,乙醇甲烷聯(lián)產(chǎn)和連續(xù)發(fā)酵的能量輸出比直接厭氧發(fā)酵分別提高17.12%和49.36%。基于對沼渣生產(chǎn)乙醇技術(shù)的探索,選擇了甲烷乙醇聯(lián)合發(fā)酵模式,研究酸堿和臭氧氨水預(yù)處理對沼渣酶解糖化效率的影響,優(yōu)化甲烷乙醇聯(lián)產(chǎn)工藝中的厭氧發(fā)酵條件和預(yù)處理參數(shù)。采用酸堿預(yù)處理對甲烷乙醇聯(lián)產(chǎn)工藝中厭氧消化條件及纖維乙醇轉(zhuǎn)化的預(yù)處理參數(shù)進(jìn)行了研究,結(jié)果表明中溫低濃度的厭氧消化對稻秸纖維素結(jié)果破壞明顯,而且預(yù)處理過程纖維素?fù)p失較低,葡萄糖得率較高,所以中溫低濃度獲得的厭氧消化纖維產(chǎn)乙醇效果較好;酸堿預(yù)處理條件的對比表明在溫和溫度條件下堿預(yù)處理對厭氧消化纖維產(chǎn)乙醇更具優(yōu)勢。適宜的堿預(yù)處理條件為60℃,3%濃度NaOH和6h,纖維素回收率高達(dá)80%以上,葡萄糖得率較高,為58.66%;中溫低濃度的厭氧消化纖維的乙醇產(chǎn)量達(dá)87g/kg,有效地提高了厭氧消化纖維產(chǎn)乙醇的效率。在甲烷乙醇聯(lián)產(chǎn)工藝中,臭氧和氨水聯(lián)合預(yù)處理可有效利用沼渣中有機(jī)碳,臭氧和氨水聯(lián)合預(yù)處理對高溫厭氧消化后的沼渣的水解糖化效率較高。甲烷乙醇聯(lián)產(chǎn)工藝質(zhì)量能量平衡分析表明采用55℃和17%發(fā)酵濃度厭氧發(fā)酵24天的沼渣進(jìn)行生產(chǎn)乙醇,具有最高的凈能量產(chǎn)出,為6416kJ,在此條件下每千克稻秸的甲烷產(chǎn)量和乙醇產(chǎn)量分別為142.8g和65.2g,證明了厭氧消化聯(lián)合乙醇發(fā)酵生產(chǎn)甲烷和乙醇是一種有效的生物煉制過程,可實現(xiàn)有機(jī)碳的聯(lián)合和連續(xù)利用。
[Abstract]:Due to the still high content of fiber and organic matter remaining in the biogas residue of straw biogas engineering, the recovery and utilization of this part of residual organic carbon can greatly improve the utilization rate of raw materials and energy conversion efficiency. A large amount of biogas residue in oxygen fermentation engineering is difficult to use, and the cost of raw materials in the process of fiber ethanol. The total biodegradation of biomass can be realized while the biological energy is produced. The effects of acid base concentration, temperature and time on the degradation and saccharification yield of rice straw are studied. The higher the concentration and temperature, the higher the removal rate of hemicellulose and lignin, the highest removal rate of hemicellulose and lignin was 89.45% and 88.92%, while the acid pretreatment mainly aimed at the hemicellulose in the rice straw, and the highest hemicellulose degradation rate was 75.58%. from the glucose yield and the concentration of the machine. The concentration of organic matter is obviously higher than that of acid pretreatment. The optimum hydrolysis condition is 2% concentration of NaOH, 60 C and 60H. Under this condition, the yield of glucose is 55.5%.. With the combination of ozone and ammonia water, the glucose concentration increases first and then decreases with the increase of ozone dosage. The glucose concentration and reducing sugar concentration are the highest when the amount of 0.75g/g ozone is used. Compared with the untreated group, the reducing sugar concentration of the ammonia pretreatment 4H increased by 82.06%, while the reducing sugar concentration of the ammonia water pretreatment 6h and 8h was not obviously improved. Therefore, the optimum parameters of the combined pretreatment of ozone and ammonia water were the combination of anaerobic digestion and ethanol fermentation by the combined technology of anaerobic digestion and ethanol fermentation to improve the biodegradation of the rice. The production of methane, methane production, methane production and methane ethanol production, methane production and ethanol production were compared by comparing direct anaerobic fermentation, methane ethanol production, methane ethanol production and ethanol production in four processes. The degradation process of lignocellulose and monosaccharide composition was studied on the basis of lignocellulose and monosaccharide composition. The results showed that the combined fermentation of methane ethanol was combined with methane fermentation. The model has some advantages. The energy output of ethanol methane co production and continuous fermentation is increased by 17.12% and 49.36%., respectively, based on the exploration of ethanol production by biogas residue. The combined fermentation mode of methane ethanol is selected to study the effect of acid base and ozone ammonia water pretreatment on the enzymatic hydrolysis of Biogas residue and optimize the methane ethanol combination. Anaerobic digestion conditions and pretreatment parameters of cellulose ethanol conversion in the process of methane ethanol production were studied by acid base pretreatment. The results showed that low medium temperature and low concentration of anaerobic digestion showed obvious damage to the results of rice straw cellulose, and the loss of cellulose was lower in the pretreatment process. The yield of glucose was higher, so the effect of anaerobic digestion fiber obtained by medium temperature and low concentration was better, and the comparison of acid base pretreatment conditions showed that under mild temperature conditions, alkali pretreatment was more advantageous to anaerobic digestion fiber. The suitable alkali pretreatment conditions were 60 degrees C, 3% concentration NaOH and 6H, and cellulose recovery rate up to 80%, Portuguese. The yield of glucose is 58.66%, the yield of ethanol in anaerobic digestion fiber with low medium temperature and low concentration is 87g/kg, which can effectively improve the efficiency of ethanol production by anaerobic digestion fiber. In the process of methane ethanol production, the combined pretreatment of ozone and ammonia water can effectively use organic carbon in the biogas sludge and the combined pretreatment of anaerobic and ammonia water to the anaerobic digestion of high temperature. The efficiency of hydrolysis and saccharification of biogas residue is high. The analysis of quality and energy balance of the process of methane ethanol production shows that the methane production with the highest net energy output, which is 6416kJ, is 6416kJ. The methane yield and the ethanol yield per kilogram of rice straw are 142.8g and 65.2g respectively. The production of methane and ethanol by oxygen digestion combined with ethanol fermentation is an effective biorefinery process, which can achieve the combined and continuous utilization of organic carbon.
【學(xué)位授予單位】:華中農(nóng)業(yè)大學(xué)
【學(xué)位級別】:博士
【學(xué)位授予年份】:2016
【分類號】:S216
【參考文獻(xiàn)】
相關(guān)期刊論文 前10條
1 王法武;劉德新;陳浩;黃世臣;;溫度與pH對靜態(tài)厭氧發(fā)酵產(chǎn)甲烷的影響[J];安徽農(nóng)業(yè)科學(xué);2014年33期
2 賈麗娟;俞芳;寧平;熊向峰;王紅斌;劉天成;王博濤;;溫度底物濃度和微量元素對牛糞厭氧發(fā)酵產(chǎn)沼氣的影響[J];農(nóng)業(yè)工程學(xué)報;2014年22期
3 朱德文;吳愛兵;王鵬軍;陶三奇;曲浩麗;馬標(biāo);;柔性頂膜車庫式干發(fā)酵裝置運行參數(shù)優(yōu)化[J];農(nóng)業(yè)工程學(xué)報;2014年21期
4 馬歡;劉偉偉;劉萍;程備久;朱蘇文;吳躍進(jìn);;微波預(yù)處理對水稻秸稈糖化率與成分和結(jié)構(gòu)的影響[J];農(nóng)業(yè)機(jī)械學(xué)報;2014年10期
5 王聞;莊新姝;袁振宏;許敬亮;亓偉;余強;譚雪松;;纖維素燃料乙醇產(chǎn)業(yè)發(fā)展現(xiàn)狀與展望[J];林產(chǎn)化學(xué)與工業(yè);2014年04期
6 王麗娟;張書廷;呂學(xué)斌;;超低濃度乙酸預(yù)處理玉米秸稈的研究[J];太陽能學(xué)報;2014年06期
7 成喜雨;李強;王靜;鐘成;;典型秸稈廢棄物與豬糞共發(fā)酵過程碳氮比的影響研究[J];可再生能源;2014年06期
8 王忠江;劉野;蔡康妮;李文哲;;氨化預(yù)處理對稻稈和雞糞干式厭氧發(fā)酵的影響[J];太陽能學(xué)報;2014年03期
9 李巡案;包先斌;慕峰;;生物沼氣產(chǎn)業(yè)價值鏈探索與分析[J];可再生能源;2014年03期
10 李軼;劉雨秋;張鎮(zhèn);易維明;;玉米秸稈與豬糞混合厭氧發(fā)酵產(chǎn)沼氣工藝優(yōu)化[J];農(nóng)業(yè)工程學(xué)報;2014年05期
相關(guān)碩士學(xué)位論文 前2條
1 車?yán)?農(nóng)作物秸稈資源量估算、分布與利用潛力研究[D];大連理工大學(xué);2014年
2 翁天杭;燃料乙醇產(chǎn)業(yè)競爭力的國際比較及發(fā)展前景預(yù)測[D];浙江大學(xué);2013年
,本文編號:2043918
本文鏈接:http://sikaile.net/shoufeilunwen/nykjbs/2043918.html