天堂国产午夜亚洲专区-少妇人妻综合久久蜜臀-国产成人户外露出视频在线-国产91传媒一区二区三区

野生種毛棉主要生育期抗旱和花鈴期光合作用的QTL定位

發(fā)布時(shí)間:2018-05-30 08:01

  本文選題:毛棉 + 種間雜交。 參考:《中國農(nóng)業(yè)科學(xué)院》2016年博士論文


【摘要】:中國是世界最大的棉花生產(chǎn)國、消費(fèi)國、進(jìn)口國和紡織品出口國,棉花在國民經(jīng)濟(jì)中起到不可替代的重要作用,也是我國出口創(chuàng)匯的重要商品。由于糧食安全問題,棉花種植區(qū)開始向東部沿海、西北內(nèi)陸及內(nèi)蒙古等鹽堿、旱地轉(zhuǎn)移。棉花屬于耗水作物,干旱抑制棉花地上地下部分生長(zhǎng),對(duì)營養(yǎng)生長(zhǎng)、生殖生長(zhǎng)發(fā)育和光合作用等造成嚴(yán)重影響,最終導(dǎo)致棉花產(chǎn)量下降、品質(zhì)降低。培育抗旱品種是解決旱地植棉的重要途徑,由于栽培種資源遺傳基礎(chǔ)狹窄,難以挖掘到如野生棉具有的優(yōu)異基因,加之傳統(tǒng)育種難以聚合高產(chǎn)、優(yōu)質(zhì)和抗旱等優(yōu)良性狀,而利用相關(guān)基因檢測(cè)及分子標(biāo)記輔助選擇為挖掘野生種優(yōu)異基因提供了有效手段。因此,本研究采用四倍體野生種毛棉和我國黃河流域歷史主栽品種中棉所12為親本進(jìn)行雜交,配制(中棉所12×毛棉)F2作圖群體,并構(gòu)建遺傳連鎖圖譜,通過對(duì)F2:3家系苗期、蕾期、盛花期和盛鈴期抗旱相關(guān)性狀及盛花期的光合性狀進(jìn)行QTL定位,以期揭示毛棉抗旱和光合作用性狀的遺傳基礎(chǔ),檢測(cè)穩(wěn)定的主效QTL,為有效發(fā)掘利用毛棉的優(yōu)異基因,開展抗旱及高光效分子標(biāo)記輔助選擇育種奠定基礎(chǔ)。1.苗期抗旱性狀QTL定位利用復(fù)合區(qū)間作圖法,對(duì)干旱脅迫(W1)及正常灌水(W2)環(huán)境下F2:3群體苗期形態(tài)和生理性狀進(jìn)行QTL定位,共檢測(cè)到41個(gè)形態(tài)和生理性狀QTL。其中,在干旱脅迫下,檢測(cè)到21個(gè)控制形態(tài)和生理性狀的QTL位點(diǎn),包括2個(gè)寬高比、3個(gè)葉片數(shù)、2個(gè)葉面積、5個(gè)株高的形態(tài)性狀QTL位點(diǎn)和2個(gè)葉綠素含量、2個(gè)脯氨酸、5個(gè)丙二醛的生理性狀QTL位點(diǎn),其中13個(gè)增效等位基因來自于毛棉,8個(gè)增效等位基因來自于中棉12,共檢測(cè)到6個(gè)加性QTL,單個(gè)位點(diǎn)可解釋6.93-16.93%的表型變異。在正常灌水下,共檢測(cè)到20個(gè)控制形態(tài)和生理性狀的QTL,包括2個(gè)株寬、6個(gè)寬高比、3個(gè)葉面積、4個(gè)株高的形態(tài)性狀的QTL位點(diǎn)和4個(gè)丙二醛、1個(gè)脯氨酸的生理性狀的QTL位點(diǎn),其中12個(gè)增效等位基因來自于中棉所12,8個(gè)增效等位基因來自于毛棉,共檢測(cè)到5個(gè)加性QTL,單個(gè)位點(diǎn)可解釋6.61-15.19%的表型變異。共檢測(cè)到16個(gè)控制苗期形態(tài)和生理性狀抗旱系數(shù)QTL位點(diǎn),其中與株高、葉片數(shù)、葉綠素含量、脯氨酸含量和丙二醛含量抗旱系數(shù)的QTL位點(diǎn)分別有5個(gè)、1個(gè)、3個(gè)、3個(gè)和4個(gè),其中10個(gè)增效等位基因來自于毛棉,6個(gè)增效等位基因來自于中棉所12,共檢測(cè)到5個(gè)加性QTL,單個(gè)位點(diǎn)可解釋8.60-25.80%的表型變異。2.蕾期、盛花期、盛鈴期抗旱性狀QTL定位利用復(fù)合區(qū)間作圖法,對(duì)2014-2015連續(xù)兩年在干旱脅迫(W1)及正常灌水(W2)條件下F2:3群體蕾期、盛花期和盛鈴期的13個(gè)形態(tài)和生理性狀進(jìn)行QTL定位,總共檢測(cè)到166個(gè)QTL:W1環(huán)境下檢測(cè)到71個(gè)控制形態(tài)及生理性狀的QTL位點(diǎn),其中蕾期包括8個(gè)葉綠素含量、5個(gè)葉面積、10個(gè)葉片數(shù)、7個(gè)株高的QTL位點(diǎn),盛花期包括5個(gè)葉綠素含量、7個(gè)葉鮮重、7個(gè)葉干重、8個(gè)株高的QTL位點(diǎn),盛鈴期包括7個(gè)單鈴重、8個(gè)果枝數(shù)、4個(gè)株高的QTL位點(diǎn),其中31個(gè)增效等位基因來自于毛棉,40個(gè)增效等位基因來自于中棉所12,共檢測(cè)到13個(gè)加性QTL,單個(gè)位點(diǎn)可解釋6.07-13.34%的表型變異;正常灌水(W2)環(huán)境下檢測(cè)到35個(gè)控制形態(tài)和生理性狀的QTL,其中蕾期包括3個(gè)株高、1個(gè)葉片數(shù)、2個(gè)葉面積、4個(gè)葉綠素含量的QTL位點(diǎn),盛花期包括4個(gè)葉鮮重、6個(gè)葉干重、2個(gè)葉綠素含量的QTL位點(diǎn),盛鈴期包括4個(gè)單鈴重、5個(gè)果枝數(shù)、4個(gè)株高的QTL位點(diǎn),其中20個(gè)增效等位基因來自于毛棉,15個(gè)增效等位基因來自于中棉所12,共檢測(cè)到8個(gè)加性QTL,單個(gè)位點(diǎn)可解釋9.2-19.88%的表型變異。共檢測(cè)到24個(gè)控制蕾期形態(tài)和生理性狀抗旱系數(shù)QTL,包括控制8個(gè)葉綠素含量、5個(gè)葉面積、4個(gè)葉片數(shù)和7個(gè)株高的抗旱系數(shù)QTL位點(diǎn),其中9個(gè)增效等位基因來自于毛棉,15個(gè)增效等位基因來自于中棉所12,檢測(cè)到2個(gè)加性QTL,單個(gè)位點(diǎn)可解釋10.93-15.8%的表型變異。共檢測(cè)到9個(gè)控制盛花期形態(tài)和生理性狀抗旱系數(shù)QTL,包括2個(gè)葉綠素含量、6個(gè)株高和1個(gè)葉鮮重的抗旱系數(shù)QTL位點(diǎn),其中6個(gè)增效等位基因來自于毛棉,3個(gè)增效等位基因來自于中棉所12,檢測(cè)到2個(gè)加性QTL,單個(gè)位點(diǎn)可解釋29.73-16.18%的表型變異。共檢測(cè)到27個(gè)控制盛鈴期形態(tài)性狀抗旱系數(shù)QTL,包括5個(gè)單鈴重、5個(gè)果枝數(shù),11個(gè)主莖粗、5個(gè)果枝始節(jié)和1個(gè)株高的抗旱系數(shù)QTL位點(diǎn),其中10個(gè)增效等位基因來自于毛棉,17個(gè)增效等位基因來自于中棉所12,共檢測(cè)到4個(gè)加性QTL,單個(gè)位點(diǎn)可解釋8.41-11.97%的表型變異。2014、2015連續(xù)兩年在干旱脅迫環(huán)境下檢測(cè)到6個(gè)穩(wěn)定的抗旱性狀QTL位點(diǎn),包括1個(gè)控制蕾期葉面積(qBLA-Chr5-1)的QTL位點(diǎn),單個(gè)位點(diǎn)可解釋9.00-13.30%的表型變異;1個(gè)控制蕾期葉綠素含量(qBCC-Chr9-1)的QTL位點(diǎn),1個(gè)控制盛花期葉綠素含量(q FCC-Chr8-1)的QTL位點(diǎn),單個(gè)位點(diǎn)可解釋4.10-16.00%的表型變異;1個(gè)控制單鈴重(qFBBW-Chr16-1)的QTL位點(diǎn),單個(gè)位點(diǎn)可解釋6.4-7.0%的表型變異、2個(gè)控制主莖粗(qFBSD-Chr21-1和qFbsd-Chr21-2)的QTL位點(diǎn),單個(gè)位點(diǎn)可解釋0.8-2.3%的表型變異。11個(gè)QTL簇分布在Chr2、5、6、14、16和21染色體上,其中Chr16染色體上分布了4個(gè)QTL簇。3.光合性狀QTL定位利用復(fù)合區(qū)間作圖法(CIM),對(duì)2014年、2015年干旱脅迫(W1)及正常灌水(W2)兩個(gè)環(huán)境下F2:3家系花鈴期光合性狀QTL進(jìn)行定位,共檢測(cè)到45個(gè)QTL。在干旱脅迫下,檢測(cè)到27個(gè)控制光合性狀的QTL位點(diǎn),包括6個(gè)凈光合速率、2個(gè)胞間CO2濃度、2個(gè)蒸騰速率、5個(gè)氣孔導(dǎo)度、5個(gè)葉片溫度和7個(gè)水分利用率的QTL位點(diǎn),共檢測(cè)到4個(gè)加性QTL,單個(gè)位點(diǎn)可解釋為11.00-13.76%的表型變異。在正常灌水下,共檢測(cè)到18個(gè)控制光合性狀QTL位點(diǎn),包括1個(gè)凈光合速率、3個(gè)胞間CO2濃度、1個(gè)氣孔導(dǎo)度、4個(gè)葉片溫度和9個(gè)水分利用率(WUE)的QTL位點(diǎn),共檢測(cè)到4個(gè)加性QTL,單個(gè)位點(diǎn)可解釋為11.00-13.76%的表型變異。qPn-Chr16-1是在2014、2015連續(xù)兩年在干旱脅迫環(huán)境下檢測(cè)到穩(wěn)定的控制光合速率的QTL位點(diǎn),位于Chr16染色體上,單個(gè)位點(diǎn)可解釋9.44-18.61%的表型變異。qGs-Chr5-1在2015年干旱和正常灌水環(huán)境中檢測(cè)到控制氣孔導(dǎo)度的QTL位點(diǎn),單個(gè)位點(diǎn)可解釋0.66-0.67%的表型變異。
[Abstract]:China is the world's largest cotton producer, consumer, importer and textile exporter. Cotton plays an irreplaceable role in the national economy. It is also an important commodity for China's export of foreign exchange. Because of the problem of food security, the cotton planting area has begun to transfer to the east coast, the northwest inland and Inner Mongolia and other saline alkali, dryland transfer. In water consumption crops, drought inhibits the growth of the upper and subterranean parts of the cotton ground, which has a serious effect on the growth of nutrition, reproductive growth and photosynthesis, and eventually leads to the decrease of cotton yield and quality. It is an important way to solve the cotton planting in dry land. Some excellent genes, in addition to traditional breeding, are difficult to polymerize high yield, high quality and drought resistance, and the use of related gene detection and molecular marker assisted selection provides an effective means for the mining of the excellent genes of wild species. Therefore, this study uses the tetraploid wild wool cotton and the main plant of the the Yellow River basin, China, as a parent. In order to reveal the genetic basis of drought resistance and Photosynthesis Characteristics of cotton wool, the genetic basis of drought resistance and Photosynthesis Characteristics of wool cotton were revealed by using the genetic linkage map of F2 F2 mapping population and genetic linkage map. The genetic basis of the drought resistance and photosynthesis character of wool cotton was revealed, and the stable main effect QTL was detected, which was effectively excavated. Using the excellent genes of wool cotton, the drought resistance and high light efficiency molecular marker assisted selection breeding were used to lay the foundation for the drought resistance of.1. at seedling stage and QTL positioning using compound interval mapping method. The morphological and physiological characters of the seedling stage of F2:3 population in the environment of drought stress (W1) and normal irrigation (W2) were located by QTL, and 41 morphological and physiological traits, QTL., were detected. Under drought stress, the QTL loci of 21 control morphology and physiological characters were detected, including 2 width height ratio, 3 leaf number, 2 leaf area, 5 plant height morphological characters QTL and 2 chlorophyll content, 2 proline and 5 malondialdehyde's physiological character QTL locus, and 13 synergistic alleles from wool cotton and 8 synergistic alleles. Due to a total of 6 additive QTL from China Cotton 12, single loci could explain the phenotypic variation of 6.93-16.93%. Under normal irrigation, 20 QTL of control morphology and physiological characters were detected, including 2 plant width, 6 width to height ratio, 3 leaf area, 4 plant height and 4 malondialdehyde and 1 proline physiological QTL. The 12 alleles of the synergistic allele were derived from the 12,8 allele of CCP from wool cotton, and 5 additive QTL were detected. A single locus could be used to explain the phenotypic variation of 6.61-15.19%. A total of 16 physiological traits controlling the drought resistance coefficient QTL loci were detected, including plant height, leaf number, chlorophyll content and proline content QTL loci and malondialdehyde content resistance coefficient were 5, 1, 3, 3 and 4, of which 10 synergistic alleles came from wool cotton, 6 synergistic alleles came from Mian 12, and 5 additive QTL was detected. Single loci could explain the phenotypic variation of 8.60-25.80% in.2. buds, flowering period, and QTL location and utilization of drought resistance during the flourishing period. In 2014-2015 consecutive years, 13 morphological and physiological characters of F2:3 population under drought stress (W1) and normal irrigation (W2), 13 morphological and physiological characters in full bloom and boll stage were located in 2014-2015 consecutive years. In total, 71 control forms and QTL loci were detected in 166 QTL:W1 environments, including 8 chlorophyll content in buds. The amount, 5 leaf area, 10 leaf number and 7 plant height QTL loci, including 5 chlorophyll content, 7 leaf fresh weight, 7 leaf dry weight, 8 plant high QTL loci, including 7 single bell weight, 8 fruit branches and 4 high QTL loci, of which 31 synergistic alleles come from wool cotton and 40 alleles come from Central Cotton 12, A total of 13 additive QTL were detected, single loci could explain the phenotypic variation of 6.07-13.34%; 35 control morphology and physiological characters were detected in normal irrigation (W2) environment, and bud period included 3 plant height, 1 leaf number, 2 leaf area, 4 chlorophyll content QTL site, 4 leaf fresh weight, 6 leaf dry weight, 2 chlorophyll content in blossom period. The QTL site, which consists of 4 single bolls weight, 5 fruit branches and 4 QTL loci, of which 20 synergistic alleles come from wool cotton, 15 synergistic alleles come from the middle cotton station 12, and 8 additive QTL are detected, and the single locus can explain the phenotypic variation of 9.2-19.88%. A total of 24 control buds and physiological traits are tested for drought resistance. Coefficient QTL, including controlling 8 chlorophyll content, 5 leaf area, 4 leaf number and 7 plant height resistance coefficient QTL loci, of which 9 synergistic alleles come from wool cotton, 15 synergistic alleles come from middle cotton 12, 2 additive QTL, single loci can explain the phenotypic variation of 10.93-15.8%. A total of 9 controlled flowering periods were detected. The drought resistance coefficient QTL of morphological and physiological characters, including 2 chlorophyll content, 6 plant height and 1 leaf fresh weight resistance coefficient QTL loci, 6 synergistic alleles come from wool cotton, 3 synergistic alleles come from the middle cotton station 12, 2 additive QTL, and single loci can explain the phenotypic variation of 29.73-16.18%. A total of 27 controls were detected. The drought resistance coefficient QTL, including 5 single bolls weight, 5 fruit branches, 11 main stems, 5 fruit branches and 1 plant high drought resistance QTL loci, 10 of the synergistic alleles came from wool cotton, 17 synergistic alleles came from the middle cottoninstitute 12, and 4 additive QTL were detected. The single locus could explain the phenotypic variation of 8.41-11.97%. 6 stable Drought Resistant Traits QTL loci were detected by.20142015 for two years under drought stress, including 1 QTL locus to control bud leaf area (qBLA-Chr5-1). Single loci could explain the phenotypic variation of 9.00-13.30%, 1 QTL locus of chlorophyll content (qBCC-Chr9-1) at the bud control period, and 1 chlorophyll content (Q FCC-Chr8-1) during the flowering period (Q FCC-Chr8-1). ) QTL loci, single loci can explain the phenotypic variation of 4.10-16.00%, 1 QTL locus controlling single boll weight (qFBBW-Chr16-1), single loci which can explain the phenotypic variation of 6.4-7.0%, 2 QTL loci for controlling the main stem (qFBSD-Chr21-1 and qFbsd-Chr21-2), and the phenotypic variation of 0.8-2.3% in single loci,.11 QTL cluster of.11, distributed in Chr2,5,6,14,16 and On the 21 chromosome, 4 QTL cluster.3. photosynthetic characters were located on the Chr16 chromosome, and QTL location using compound interval mapping (CIM) was used. In 2014, 2015, drought stress (W1) and normal irrigation (W2), the photosynthetic characteristics of the flower and boll phase of F2:3 family were located in two environments, and 45 QTL. were detected under drought stress and 27 controlled photosynthetic characteristics were detected. The QTL locus, including 6 net photosynthetic rates, 2 intercellular CO2 concentrations, 2 transpiration rates, 5 stomatal conductance, 5 leaf temperatures and 7 QTL loci of 7 water utilization, detected 4 additive QTL, single loci can be interpreted as the phenotypic variation of 11.00-13.76%. Under normal irrigation, 18 controlled photosynthetic traits were detected, including 1. Net photosynthetic rate, 3 intercellular CO2 concentrations, 1 stomatal conductance, 4 leaf temperatures and 9 water use rate (WUE) QTL loci, a total of 4 additive QTL were detected, and single loci could be interpreted as 11.00-13.76% phenotypic variation.QPn-Chr16-1 is a stable QTL locus for controlling photosynthetic rate under 20142015 consecutive years of drought stress. On the Chr16 chromosome, a single locus can explain the phenotypic variation of 9.44-18.61%,.QGs-Chr5-1, to detect the QTL locus for controlling stomatal conductance in the drought and normal irrigation environment in 2015, and a single locus can explain the phenotypic variation of 0.66-0.67%.
【學(xué)位授予單位】:中國農(nóng)業(yè)科學(xué)院
【學(xué)位級(jí)別】:博士
【學(xué)位授予年份】:2016
【分類號(hào)】:S562

【參考文獻(xiàn)】

相關(guān)期刊論文 前10條

1 王海標(biāo);陳全家;劉鵬鵬;張海燕;曾凱;柴顏軍;朱燕飛;江群;曲延英;;苗期干旱脅迫對(duì)棉花生理特性、產(chǎn)量構(gòu)成因素和纖維品質(zhì)的影響[J];新疆農(nóng)業(yè)科學(xué);2013年12期

2 馮方劍;宋敏;陳全家;姚正培;李楊陽;劉艷;王興安;曲延英;;棉花苗期抗旱相關(guān)指標(biāo)的主成分分析及綜合評(píng)價(jià)[J];新疆農(nóng)業(yè)大學(xué)學(xué)報(bào);2011年03期

3 王義青;李俊文;石玉真;劉愛英;商海紅;龔舉武;王濤;鞏萬奎;袁有祿;;陸地棉高品質(zhì)品系纖維品質(zhì)性狀QTL的分子標(biāo)記及定位[J];棉花學(xué)報(bào);2010年06期

4 秦永生;劉任重;梅鴻獻(xiàn);張?zhí)煺?郭旺珍;;陸地棉產(chǎn)量相關(guān)性狀的QTL定位[J];作物學(xué)報(bào);2009年10期

5 林忠旭;馮常輝;郭小平;張獻(xiàn)龍;;陸地棉產(chǎn)量、纖維品質(zhì)相關(guān)性狀主效QTL和上位性互作分析[J];中國農(nóng)業(yè)科學(xué);2009年09期

6 昝偉;高峰;劉海峰;李國英;宋武;羅城;李暉;;海島棉抗黃萎病性狀分子標(biāo)記的研究及QTL的定位[J];新疆農(nóng)業(yè)科學(xué);2008年05期

7 陳倫林;鄒小云;李書宇;鄒曉芬;張建模;宋來強(qiáng);;SSR和SRAP標(biāo)記揭示甘藍(lán)型油菜遺傳多樣性的差異分析[J];分子植物育種;2008年03期

8 吳銀明;王平;劉洪升;劉淑英;王娟;;分根PEG脅迫對(duì)羊草幼苗植物量、活性氧代謝及脯氨酸含量的影響[J];甘肅農(nóng)業(yè)大學(xué)學(xué)報(bào);2008年02期

9 楊昶;郭旺珍;張?zhí)煺?;陸地棉抗黃萎病、纖維品質(zhì)和產(chǎn)量等農(nóng)藝性狀的QTL定位[J];分子植物育種;2007年06期

10 甄瑞;王省芬;馬峙英;張桂寅;王雪;;海島棉抗黃萎病基因SSR標(biāo)記研究[J];棉花學(xué)報(bào);2006年05期

相關(guān)博士學(xué)位論文 前6條

1 葛學(xué)亮;黃顙魚(Pelteobagrus fulvidraco)遺傳圖譜構(gòu)建及生長(zhǎng)相關(guān)性狀的QTL定位[D];東北林業(yè)大學(xué);2010年

2 孔廣超;陸地棉RIL群體遺傳圖譜構(gòu)建及產(chǎn)量與纖維品質(zhì)QTL定位[D];浙江大學(xué);2009年

3 李成奇;棉花衣分等產(chǎn)量性狀的遺傳、QTL定位及不同衣分材料纖維初始發(fā)育的比較研究[D];南京農(nóng)業(yè)大學(xué);2007年

4 宋美珍;短季棉早熟不早衰生化遺傳機(jī)制及QTL定位[D];中國農(nóng)業(yè)科學(xué)院;2006年

5 沈新蓮;陸地棉纖維品質(zhì)QTL的篩選、定位及其應(yīng)用[D];南京農(nóng)業(yè)大學(xué);2004年

6 袁有祿;棉花優(yōu)質(zhì)纖維特性的遺傳及分子標(biāo)記研究[D];南京農(nóng)業(yè)大學(xué);2000年

相關(guān)碩士學(xué)位論文 前8條

1 孔祥瑞;棉花黃萎病抗性的分子標(biāo)記研究[D];中國農(nóng)業(yè)科學(xué)院;2011年

2 張興居;棉花新種質(zhì)魯HB22黃萎病抗性、產(chǎn)量和纖維品質(zhì)的分子標(biāo)記[D];山東農(nóng)業(yè)大學(xué);2011年

3 李東曉;干旱對(duì)棉花葉片的衰老生理及抗氧化酶同工酶譜特征的影響[D];河北農(nóng)業(yè)大學(xué);2010年

4 高偉;四倍體棉種的遺傳多樣性分析[D];華中農(nóng)業(yè)大學(xué);2010年

5 王俊芳;基于SSR標(biāo)記的棉種真實(shí)性和品種純度鑒定技術(shù)研究[D];中國農(nóng)業(yè)科學(xué)院;2009年

6 張先亮;陸地棉重要農(nóng)藝性狀的QTL定位[D];中國農(nóng)業(yè)科學(xué)院;2007年

7 吳翠翠;棉花黃萎病抗性的分子標(biāo)記和QTL定位[D];華中農(nóng)業(yè)大學(xué);2007年

8 蒿若超;新疆陸地棉纖維品質(zhì)性狀的遺傳模型與QTL分析[D];中國農(nóng)業(yè)大學(xué);2005年



本文編號(hào):1954549

資料下載
論文發(fā)表

本文鏈接:http://sikaile.net/shoufeilunwen/nykjbs/1954549.html


Copyright(c)文論論文網(wǎng)All Rights Reserved | 網(wǎng)站地圖 |

版權(quán)申明:資料由用戶15c64***提供,本站僅收錄摘要或目錄,作者需要?jiǎng)h除請(qǐng)E-mail郵箱bigeng88@qq.com
99国产精品国产精品九九| 免费啪视频免费欧美亚洲| 99少妇偷拍视频在线| 欧美日韩精品人妻二区三区| 久久99一本色道亚洲精品| 国产又猛又大又长又粗| 日本丰满大奶熟女一区二区| 亚洲午夜av一区二区| 黄色国产精品一区二区三区| 亚洲国产成人精品福利| 黄片美女在线免费观看| 国产精品免费视频视频| 国产肥女老熟女激情视频一区| 日韩夫妻午夜性生活视频| 老富婆找帅哥按摩抠逼视频| 欧美日韩精品综合在线| 激情综合网俺也狠狠地| 亚洲精品国产第一区二区多人| 日韩欧美中文字幕人妻| 日韩免费av一区二区三区| 亚洲午夜福利视频在线| 少妇肥臀一区二区三区| 五月激情婷婷丁香六月网| 熟女体下毛荫荫黑森林自拍| 成年女人午夜在线视频| 国产一区二区久久综合| 男人大臿蕉香蕉大视频| 国产日韩中文视频一区| 欧美丰满大屁股一区二区三区| 有坂深雪中文字幕亚洲中文 | 丰满人妻一二区二区三区av| 久久机热频这里只精品| 好吊色免费在线观看视频| 亚洲一区精品二人人爽久久| 欧美成人一区二区三区在线| 久久国产精品熟女一区二区三区| 成人午夜视频精品一区| 欧美熟妇喷浆一区二区| 日本在线不卡高清欧美 | 成在线人免费视频一区二区| 日韩一区二区三区嘿嘿|