基于提升回歸樹的東、黃海鮐魚漁場預(yù)報模型研究
本文選題:鮐魚 + 提升回歸樹模型; 參考:《上海海洋大學(xué)》2016年博士論文
【摘要】:鮐魚(Scomber japonicus)是沿海性中上層魚類,廣泛分布于西北大西洋沿岸。中國東、黃海擁有豐富的鮐魚資源。到90年代后期,鮐魚的年產(chǎn)量超過30萬噸,成為我國近海主要的經(jīng)濟魚種之一。鮐魚是一種洄游性魚類,其洄游路徑鮐魚是一種季節(jié)洄游性魚類,其作業(yè)漁場位置與洄游路線密切相關(guān),同時也受到海洋環(huán)境條件變動的影響,呈現(xiàn)出較大的年際變化,準(zhǔn)確的漁場預(yù)報能夠指導(dǎo)燈光圍網(wǎng)漁業(yè)企業(yè)合理安排船組的生產(chǎn)位置,縮短尋找漁場的時間,減少成本并提高漁獲產(chǎn)量,這對我國大型燈光圍網(wǎng)鮐魚漁業(yè)具有重要的作用。為此,論文針對鮐魚漁場預(yù)報模型種類不多、模型研究不系統(tǒng)的狀況,在總結(jié)現(xiàn)有的漁情分析和漁場預(yù)報模型的基礎(chǔ)上,引入了提升回歸樹模型,系統(tǒng)介紹了提升回歸樹模型的構(gòu)建、求解和算法實現(xiàn)以及模型參數(shù)的選擇等。論文以東、黃海鮐魚為案例,構(gòu)建了基于提升回歸樹的漁場預(yù)報模型,一方面拓展了現(xiàn)有的漁情分析和漁場預(yù)報模型的理論和方法,可為東、黃海鮐魚的漁場預(yù)報和漁業(yè)資源管理提供理論支持;另一方面,論文的研究涵蓋了數(shù)據(jù)模型、漁場學(xué)基礎(chǔ)和預(yù)報模型三個方面,也為我國在柔魚、金槍魚等遠洋漁業(yè)漁場預(yù)報模型的構(gòu)建提供了參考。主要研究成果如下:(1)東、黃海鮐魚漁場的時空分布特征。研究發(fā)現(xiàn),2003~2011年大型鮐魚燈光圍網(wǎng)漁船在每年的7~9月份主要在東海作業(yè),10~12月份主要在黃海作業(yè)。各個月份的變異系數(shù)均大于0.3,表明同一月份下的漁獲量的年間波動較大。在東海,8月份的漁獲量多年月平均值最高,且變異系數(shù)最小;而7月份的漁獲量平均值最低,且變異系數(shù)超過了0.5,波動較為劇烈。在黃海,11月份的多年月平均產(chǎn)量最高,且變異系數(shù)最小;而10月份的漁獲量多年月平均值較高,但變異系數(shù)超過了0.6,波動最為劇烈;12月份的漁獲量多年月平均值最小,且波動也較大。表明8月份和11月份分別是大型燈光圍網(wǎng)漁業(yè)在東海和黃海海域較為穩(wěn)定的生產(chǎn)期。在東海,2003年的漁獲量最高、2011年的漁獲量最低;在黃海,2008年的漁獲量最高、2006年的漁獲量最低?傮w而言,東海的多年平均產(chǎn)量百分比約占60.81%,而黃海的多年平均產(chǎn)量百分比約占39.19%。東海的多年平均漁獲量高于黃海,方差和變異系數(shù)則比黃海要低,這說明東海是2003~2011年間大型燈光圍網(wǎng)漁業(yè)的主要產(chǎn)區(qū),其年產(chǎn)量較高,且產(chǎn)量相對穩(wěn)定。在東海,2003~2011年鮐魚大型燈光圍網(wǎng)漁業(yè)的漁獲量百分比在經(jīng)度上的分布的年間差異較大。2003~2011年各年的漁獲量主要分布在123°e~127°e海域,除2009年以外,該區(qū)域的漁獲量均占到了全年漁獲量的95%以上,其余區(qū)域則漁獲量極低。雖然該區(qū)域在2009年的漁獲量所占比例較其它年份稍低,但除約40%的漁獲量分布于122°e~123°e海域外,2009年的大部分漁獲量依然分布于123°e~127°e范圍內(nèi)。而在123°e~127°e范圍內(nèi),各年份的分布差異也較為明顯,其中2003、2004、2007和2011年漁獲量偏向近海,全年漁獲量的75%~90%位于125°e以西,尤其是2003和2007年,漁獲量的75%~90%均分布于123°e~124°e范圍內(nèi);2005、2008和2010年漁獲量則偏向東海外海,全年漁獲量的60%~90%位于125°e以東海域;2006年漁獲量則主要分布于124°e~126°e海域。在緯度方向上,2003~2011年各年的漁獲量主要分布在26°n~30°n海域,除2003、2005和2007年以外,該區(qū)域的漁獲量均占到了全年漁獲量的80%~95%以上。在大部分年份,30°n以北的海域的鮐魚漁獲量相對較低,但在2003年30°n~31°n海域的漁獲量占到了全年的40%以上,2005年則超過了全年漁獲量的50%,2007年占全年漁獲量的70%以上。分析發(fā)現(xiàn),東海海域各年經(jīng)度漁獲量比重的年間相關(guān)系數(shù)中,2003年和2007年的漁獲量比重相關(guān)系數(shù)較高,2006、2008、2010、2011年的相關(guān)系數(shù)較高,2004年與2011年具有一定的相似性,但和其余年份差異較大。2005年和2009年兩個年份與其它所有年份在經(jīng)度上的空間分布均存在較大的差異。東海海域各年緯度漁獲量比重的年間相關(guān)系數(shù)中,2003~2011年漁獲量在緯度上的空間分布明顯分為3個類型:首先,2004、2006、2008、2009、2010和2011年這幾年的相關(guān)系數(shù)均較高,表示這些年份中大型鮐魚燈光圍網(wǎng)漁業(yè)的漁獲量百分比在緯度上的分布較為相似;其次,2005年和2007年的相關(guān)系數(shù)也達到了0.9,說明其漁獲量百分比在緯度上的分布具有相似性;最后,2003年與其它所有年份的相關(guān)系數(shù)均小于0.4,與2005年和2007年的相關(guān)系數(shù)小于0,說明2003年的漁獲量百分比在緯度上的分布與其它所有年份均有較大差異。在黃海海域,2003~2011年鮐魚大型燈光圍網(wǎng)漁業(yè)各年間的漁獲量百分比在經(jīng)度上的分布趨勢基本相同,均主要分布在123°e~126°e海域,該區(qū)域的漁獲量均占到了全年漁獲量的90%以上,其余區(qū)域則漁獲量極低。除2006年外,在127°e以東海域均沒有漁獲量分布。在所有年份中,122°e以西海域的漁獲量百分比也均不超過1%。緯度方向上,32°n~36°n的所有緯度范圍均有最高漁獲量比重分布,如2004年和2009年分布在32°n~33°n海域,2008、2010和2011年分布在33°n~34°n海域,2005年在34°n~35°n海域,2003、2006和2007年則在35°n~36°n海域。分析發(fā)現(xiàn),黃海海域各年經(jīng)度漁獲量比重的年間相關(guān)系數(shù)中,除2009年之外,2003~2011年多數(shù)年份間的漁獲量比重相關(guān)系數(shù)均較高,說明在黃海海區(qū)各年份間漁獲量比重在經(jīng)度上的空間分布差異不大。其中,2009~2011年的相關(guān)系數(shù)較高,空間分布差異較小,但2009年與其余各年份的相關(guān)系數(shù)均較小;2003~2004、2006~2008年的相關(guān)系數(shù)也均大于0.95,說明這些年份漁獲量比重在經(jīng)度上的空間分布差異極小;2004年和2005年的相關(guān)系數(shù)為0.89,說明其漁獲量比重的空間分布也有一定的相似性,且2005年2006年、2008年的相關(guān)系數(shù)也大于0.9。黃海海域各年緯度漁獲量比重的年間相關(guān)系數(shù)分析中,2003~2011年漁獲量百分比的相關(guān)系數(shù)僅個別年間較高,如2003、2006和2007年,2009年和2011年,2011年和2010年等,但這些年份與其它年份之間的相關(guān)系數(shù)均較低,因此沒有形成明顯的類別。這表明,2003~2011年黃海海區(qū)的大型鮐魚燈光圍網(wǎng)的漁獲量百分比在緯度上的空間分布具有明顯的差異性,僅有少數(shù)年份的空間分布具有相似,而多數(shù)年份的分布情況并不相同。此外,研究還發(fā)現(xiàn),2003~2011年東、黃海鮐魚漁場重心的緯度在所有的年份隨時間上的變動大體上是一致的,即每年的7~8月份位于32°n以南的東海漁場,9月或10月份開始向北漁場轉(zhuǎn)移,11~12月份漁場重心由黃海北部向南移動,到12月份,漁場重心一般會南移至32°n左右,有些年份可能會移動到東海海域。從細節(jié)上看,東、黃海鮐魚漁場重心緯度的變化情況又有如下一定的差異。首先是漁場由東海轉(zhuǎn)向黃海的時間,9月或10月是東、黃海鮐魚作業(yè)漁場轉(zhuǎn)換的時間,但每年的轉(zhuǎn)場時間并不一致。其中2003、2004、2009、2011年的轉(zhuǎn)場時間較早,一般是在9月份的第一個星期或第二個星期開始向黃海移動,在10月份之前完成作業(yè)漁場位置的轉(zhuǎn)換。而2005、2006、2007、2009和2010年的轉(zhuǎn)場時間較晚,一般在當(dāng)年10月份的第一或第二周才開始向黃海移動,在11月份之前完全移動到黃海漁場。其次是黃海漁場重心位置,每年的10~11月,大型燈光圍網(wǎng)漁船主要在黃海海域生產(chǎn),每年黃海漁場的漁場重心位置也有差異。2005和2009年的漁場重心明顯偏北,已經(jīng)達到37°n~38°n左右,而其余年份的漁場重心則主要在36°n~37°n左右。最后是12月份的漁場重心位置差異,每年的12月,大型燈光圍網(wǎng)漁業(yè)的作業(yè)位置相對10~11月份主要變化是向南移動,但12月份本身的漁場重心也有一定的差異。2006年之前,12月份的漁場重心一般在34°n左右,且12月內(nèi)的4個星期的漁場重心變化不大。而2006年之后,每年12月份的漁場重心均有較大差異,如2007和2009年,漁場重心從第一個星期開始向南移動,到第四周時已經(jīng)移動到28°n左右。而2011年,12月的漁場重心主要在33°n~34°n范圍內(nèi)小幅移動。(2)建模方法對東、黃海鮐魚漁場預(yù)報模型精度的影響。研究發(fā)現(xiàn),根據(jù)漁業(yè)數(shù)據(jù)劃分高產(chǎn)區(qū)和非高產(chǎn)區(qū)進行建模的三種模型不能正確地預(yù)測中心漁場和非中心漁場,從kappa系數(shù)auc值上看,這三種模型還達不到可用的標(biāo)準(zhǔn)。對于2011年實際作業(yè)記錄的統(tǒng)計來看,實際作業(yè)記錄、下網(wǎng)次數(shù)和漁獲量均分布在模型預(yù)報漁場概率小于0.5的區(qū)域。根據(jù)實際作業(yè)記錄與預(yù)報漁場概率疊加來看,這三種模型對于中心漁場的預(yù)報無法與實際作業(yè)位置吻合,漁場的移動情況也與實際情況不同。這說明對于東、黃海鮐魚漁場預(yù)報而言,不同的建模方法對漁場預(yù)報的精度具有決定性的影響,使用高產(chǎn)區(qū)/低產(chǎn)區(qū)劃分方法建立的漁場預(yù)報模型的預(yù)報精度無法達到實用的要求,而以漁場/背景方法建立的預(yù)報模型則能夠滿足實際漁場預(yù)報的精度要求。從模型比較的結(jié)果來看,雖然高產(chǎn)區(qū)/低產(chǎn)區(qū)劃分方法在柔魚和金槍魚等魚種的漁場預(yù)報中比較常用,但在東、黃海鮐魚漁場預(yù)報模型中并不適用,而以漁場/背景方法建立的鮐魚預(yù)報模型則能夠滿足實際鮐魚漁場預(yù)報的精度要求,因此該方法是適用的。(3)基于提升回歸樹的東、黃海鮐魚漁場預(yù)報模型。研究發(fā)現(xiàn),基于提升回歸樹的東黃海鮐魚漁場預(yù)報模型所預(yù)報的2011年7~9月的漁場主要位于東海中南部26.5°n~31°n、122.5°e~127°e區(qū)域以及29°n~31°n、124°e以西的舟山漁場,其中9月份東海中南部漁場向東北方向稍有移動,并且在36°n附近的黃海海域也有漁場分布,但預(yù)報的漁場概率不高。10~12月的預(yù)報漁場主要位于黃海海域,隨時間推移預(yù)報漁場有向黃海南部移動的趨勢,12月份的主要預(yù)報漁場已南移至33.5°n,最南達到東海北部海域,同時東海中南部也有小范圍的漁場分布?傮w上看,除了9月份黃海海域和10月份東海北部海域?qū)嶋H作業(yè)漁場概率預(yù)測值偏低之外,預(yù)報漁場的位置與實際作業(yè)位置基本吻合,其隨時間的位置移動也基本與實際情況相符,這說明模型的預(yù)報漁場在空間分布上是合理的。從基于驗證數(shù)據(jù)集的評價結(jié)果來看,基于提升回歸樹的漁場預(yù)報模型預(yù)報準(zhǔn)確率較高(AUC值0.935),且能有效地區(qū)分低產(chǎn)和高產(chǎn)區(qū)域。從空間位置上來看,預(yù)報漁場的范圍也基本與實際作業(yè)位置吻合。研究表明,采用基于提升回歸樹的漁場預(yù)報模型來預(yù)報東、黃海鮐魚漁場是可行的。同時,從鮐魚漁業(yè)資源管理和保護的角度來說,中心漁場或高產(chǎn)漁區(qū)同時也是鮐魚資源保護的關(guān)鍵區(qū)域。因此,準(zhǔn)確的預(yù)測這些區(qū)域的位置,對于鮐魚資源的管理和保護也有重要的意義。
[Abstract]:Scomber japonicus (mackerel mackerel) is a coastal middle upper fish, widely distributed in the coastal the Atlantic. China East, the Yellow Sea has rich mackerel resources. By the late 90s, the total output of mackerel was more than 300 thousand tons, and mackerel was a migratory fish, the migration route of mackerel was a season. The location of migratory fish is closely related to the migratory route, and it is also influenced by the changes in the marine environmental conditions, showing a large interannual change. The accurate prediction of fishing grounds can guide the lighting seine fishery enterprises to arrange the production position of the ship group reasonably, shorten the time for finding the fishing ground, reduce the cost and increase the catch production. This has an important role in the large light Seine mackerel fishery in China. To this end, the paper has introduced the lifting regression tree model on the basis of the existing fishing situation analysis and the fishing field forecasting model, and systematically introduced the construction of the lifting regression tree model. In this paper, a fishing field prediction model based on the lifting regression tree is constructed in the case of the mackerel in the East and the the Yellow Sea. On the one hand, the theory and method of the existing fishing situation analysis and the fishing field prediction model are extended, and the theory and the theory support for the fishing ground prediction and fishery resources management of the mackerel in East, the Yellow Sea, and the mackerel are provided. The study covered three aspects of the data model, the foundation of the fishing field and the forecast model, and also provided a reference for the construction of the prediction model for the ocean fishing grounds of the soft fish and tuna fish in China. The main research results are as follows: (1) the spatial and temporal distribution characteristics of the mackerel fishing grounds in the East and the Yellow Sea. The study found that the large mackerel light Seine fishing in 2003~2011 was found. The ship is mainly in the East China Sea in the 7~9 month of the year, and the month of 10~12 is mainly in the Yellow Sea. The variation coefficient of each month is more than 0.3, which indicates that the year in the year of January has a great fluctuation. In the East China Sea, the average value of the catch was the highest in August, and the coefficient of variation was the smallest; and the average of the catch in July was the lowest and variation. In the Yellow Sea, the average annual monthly output in November is the highest and the variation coefficient is the smallest in the Yellow Sea. In October, the annual monthly mean value of the catch is higher, but the coefficient of variation exceeds 0.6 and the fluctuation is the most intense. In December, the annual mean value of the catch is the smallest and the fluctuation is larger. In August and November, respectively, respectively. It is a relatively stable production period of large light seine fishery in the East China Sea and the Yellow Sea sea. In the East China Sea, the catch was highest in the East China Sea in 2003 and the lowest catch in 2011. In the Yellow Sea, the catch was highest in 2008 and the lowest catch in 2006. In general, the average annual output of the East China Sea was about 60.81% per hundred percent, and the average annual output of the Yellow Sea was 100 percent. The average annual catches in the East China Sea of 39.19%. are higher than that in the Yellow Sea, and the variance and coefficient of variation are lower than that in the Yellow Sea. This indicates that the East China Sea is the main production area of the large light seine fishery in the period of 2003~2011, and its annual output is higher and the yield is relatively stable. In the East China Sea, the percentage of the catch percentage of the mackerel large type light seine fishery in the East China Sea is on the longitude. The annual variation of the distribution in the.2003~2011 year was mainly distributed in the 123 degree e~127 / e sea area. Except for 2009, the catch accounted for more than 95% of the annual catch, and the rest area was very low. Although the proportion of the area in 2009 was slightly lower than that of the other years, except about 40% of the catch. In the area of 122 degree e~123 e, most of the catches in 2009 are still distributed in the range of 123 e~127 e. In the range of 123 degrees e~127 e, the distribution differences in each year are also obvious, and the catch of 200320042007 and 2011 is near to the sea, and the annual catch 75%~90% is located in the west of 125 degree e, especially in 2003 and 2007. The 75%~90% is distributed in the range of 123 degree e~124 e, and the catch in 20052008 and 2010 is biased toward the sea of the East China Sea, and the annual catch 60%~90% is located in the East Sea area of 125 degree e. In 2006, the catch is mainly distributed in the 124 degree e~126 degree e sea area. In the latitude direction, the catch of each year in 2003~2011 year is mainly distributed in the 26 degrees n~30 degree n sea area, except 20032005 and 200. In 7 years, the catches in the region accounted for more than 80%~95% of the annual catch. In most years, the catch of mackerel in the sea area north of 30 N was relatively low, but the catch in the 30 degree n~31 n sea area in 2003 accounted for more than 40% in the whole year. In 2005, it exceeded 50% of the annual catch. In 2007, it accounted for more than 70% of the annual catch. It is found that the correlation coefficient of the specific gravity of the annual catches in the East China Sea is higher in 2003 and 2007, and the correlation coefficient of the 2006200820102011 years is higher. In 2004 and 2011, it has a certain similarity, but the difference is larger in.2005 and 2009 in two years and in all the other years in the rest of the year in the other years. There are great differences in the spatial distribution of the longitude. In the annual correlation coefficient of the annual latitudinal catches in the East China Sea, the spatial distribution of 2003~2011 catch at latitude is obviously divided into 3 types: first, the correlation coefficient of 20042006200820092010 and 2011 is higher, indicating the large mackerel light in these years. The distribution of catch percentage in the seine fishery is similar in latitude; secondly, the correlation coefficient of 2005 and 2007 also reaches 0.9, indicating that the distribution of its catch percentage is similar in latitude; finally, the correlation coefficient of all the years in 2003 is less than 0.4, and the correlation coefficient of 2005 and 2007 is less than 0, indicating 2. The distribution of catch percentage in latitude 003 years has a great difference from all the other years. In the the Yellow Sea sea area, the distribution trend of the catch percentage in the longitude of mackerel mackerel large light seine fishery in 2003~2011 is basically the same in the longitude, which is mainly distributed in the 123 e~126 e sea area. More than 90% of the quantity and the rest of the area are very low. Except for 2006, there is no catch distribution in the East Sea area of 127 degree e. In all years, the percentage of catch in the West Sea area of 122 degree e is not more than the direction of 1%. latitude. All latitude of 32 degree n~36 degree n has the highest catch proportion distribution, such as 2004 and 2009 distribution at 32 degree n. ~33 degree n sea area, 20082010 and 2011 distribution in 33 degree n~34 n sea area, 2005 in 34 degree n~35 n sea area, 20032006 and 2007 in 35 degree n sea area. There is little difference in the spatial distribution of catches in the longitude of each year in the Huanghai Sea area. Among them, the correlation coefficient of 2009~2011 year is higher and the spatial distribution difference is small, but the correlation coefficient between 2009 and the rest of the years is smaller, and the correlation coefficient of 2003~20042006~2008 year is also larger than 0.95, indicating that the proportion of the catch of these years is longitude. The spatial distribution difference is very small; the correlation coefficient of 2004 and 2005 is 0.89, indicating that the spatial distribution of its catch proportion is also similar, and the correlation coefficient of 2006 2005 in 2008 is greater than that of the year correlation series analysis of the annual latitudinal catch of 0.9. the Yellow Sea sea area, and the correlation of the percentage of fishing catch in 2003~2011 years. The coefficient is higher only in a few years, such as 20032006 and 2007, 2009 and 2011, 2011 and 2010, but the correlation coefficient between the years and the other years is low, so there is no obvious category. This shows that the spatial distribution of the catch percentage of the large mackerel light enclosure in the the Yellow Sea sea area of the the Yellow Sea sea area is in the latitude. There are obvious differences, only a few years of spatial distribution are similar, and the distribution of most years is different. In addition, the study also found that the latitude of the center of gravity of the mackerel fishing ground in the Yellow Sea, in 2003~2011, was generally consistent in all the years, that is, the annual 7~8 month is located in the East China Sea fishing ground south of 32 degrees N, 9 The center of center of gravity of the fishing ground moved southward from northern the Yellow Sea in 11~12 month or October. By December, the center of gravity of the fishing ground generally moved southward to about 32 n, and some years may move to the sea area. In detail, the variation of the latitude of the center of gravity of the mackerel in East and the Yellow Sea has a certain difference. First, the fishing ground is from the fishing ground. The time for the East China Sea to turn to the Yellow Sea, in September or October, is the time for the conversion of the mackerel in East and the Yellow Sea, but the time of the transfer is not consistent each year. The 2003200420092011 years of the transfer time is earlier, generally moving to the Yellow Sea in the first or second weeks of September, and completing the position of the fishing ground before October. In 2005200620072009 and 2010, the transfer time was late, generally in the first or second weeks of the year in October, it began to move to the Yellow Sea, and moved to the the Yellow Sea fishing ground before November. Next, the center of the the Yellow Sea fishing ground, each year of the 10~11 month, the large light Seine fishing boats were mainly produced in the the Yellow Sea sea, and each year the Yellow Sea fishing grounds The center of gravity of the fishing ground is also different.2005 and the center of the fishing ground in 2009 is obviously north, which has reached about 37 n~38 n, and the rest of the fishing ground is mainly about 36 n~37 degrees N. Finally, the difference of the center of gravity of the fishing ground in December, and in December, the main change of the operation position of the large light seine fishery is relative to the month of 10~11. South movement, but the center of gravity of its own fishing ground in December has a certain difference.2006 years ago, the center of the fishing ground in December was generally around 34 n, and the center of gravity of the fishing ground changed little in the 4 weeks in December, and after 2006, the center of gravity of the fishing ground in December was quite different, such as 2007 and 2009, the center of gravity of the fishing ground began to south from the first week. The movement has moved to about 28 n in the fourth week. In 2011, the center of gravity of the fishing ground in December was mainly moved in the range of 33 degrees n~34 n. (2) the modeling method influenced the precision of the model of the mackerel fishing ground in the Yellow Sea. The study found that the three models of modeling high yield and non high yield areas according to the fishery data were not correctly predicted. At the center fishing ground and non central fishing ground, the three models can not reach the standard of availability from the value of the kappa coefficient AUC. For the statistics of actual operation records in 2011, the actual operation records, the number of down nets and the catch are distributed in the area where the probability of the model forecast fishing ground is less than 0.5. According to the actual operation record and the prediction of the fishing ground probability superposition In view of the three models, the prediction of the central fishing ground can not coincide with the actual operation position, and the movement of the fishing ground is also different from the actual situation. This shows that for the East and the Yellow Sea mackerel fishing ground forecast, the different modeling methods have a decisive influence on the precision of the fishing ground forecast, and the fishing ground is established by the method of high yield / low yield division. The prediction accuracy of the field prediction model can not meet the practical requirements, and the prediction model established by the fishing ground / background method can meet the precision requirements of the actual fishing ground prediction. From the model comparison, although the high yield / low yield division method is more commonly used in the fishing ground prediction of the fish species such as the soft fish and the tuna, but in the East, the Yellow Sea The mackerel prediction model of mackerel fishing ground is not applicable, and the mackerel prediction model based on the fishing ground / background method can meet the precision requirements of the actual mackerel fishing ground prediction. Therefore, this method is applicable. (3) the model of mackerel fishing ground prediction based on the east of the lifting regression tree and the the Yellow Sea mackerel fishing ground prediction model. The fishing ground of 2011 7~9 month predicted by the model is mainly located in the 26.5 degree n~31 degree n, 122.5 degree e~127 degree E region and 29 [n~31] n and 124 degree e to the Zhoushan fishing ground. In September, the fishing ground in the East China Sea of the East China Sea is slightly moved north-east, and there are fishing grounds in the Huang Haihai domain near 36 degrees, but the probability of the forecast is not high.1. The forecast fishing grounds for 0~12 months are mainly located in the the Yellow Sea sea area. As time goes on, the fishing ground is predicted to move towards the Yellow Hainan section. The main forecast for December is fishing.
【學(xué)位授予單位】:上海海洋大學(xué)
【學(xué)位級別】:博士
【學(xué)位授予年份】:2016
【分類號】:S934
【相似文獻】
相關(guān)期刊論文 前10條
1 沈新強,王云龍,袁騏,黃洪亮,周愛忠;北太平洋魷魚漁場葉綠素a分布特點及其與漁場的關(guān)系[J];海洋學(xué)報(中文版);2004年06期
2 林東明;陳新軍;;印度洋西北部海域鳶烏賊漁場分布及其與海面溫度的關(guān)系[J];海洋科學(xué)進展;2006年04期
3 李綱;陳新軍;;夏季東海漁場鮐魚產(chǎn)量與海洋環(huán)境因子的關(guān)系[J];海洋學(xué)研究;2009年01期
4 宋海棠,陳阿毛,丁天明,,苗振清,李平,水柏年,黃傳平,商金發(fā);浙江漁場鮐湽魚資源利用研究[J];浙江水產(chǎn)學(xué)院學(xué)報;1995年01期
5 布多;姜東生;任景印;李增軍;張洋國;古桑卓瑪;郭敏;;拉薩地區(qū)漁場水體重金屬砷的初步研究[J];西藏大學(xué)學(xué)報(自然科學(xué)版);2011年01期
6 胡奎偉;許柳雄;陳新軍;朱國平;王學(xué)f ;;海洋遙感在漁場分析中的研究進展[J];中國水產(chǎn)科學(xué);2012年06期
7 朱德林,宋海棠,薄治禮,吳祖杰;浙江近海夏秋季鮐湽?jié)O場的研究[J];海洋通報;1984年02期
8 袁啟榮;1997年春汛閩東、臺北漁場中上層魚生產(chǎn)漁海況分析[J];海洋漁業(yè);1998年02期
9 田思泉;陳新軍;楊曉明;;阿拉伯北部公海海域鳶烏賊漁場分布及其與海洋環(huán)境因子關(guān)系[J];海洋湖沼通報;2006年01期
10 邵鋒;陳新軍;;印度洋西北海域鳶烏賊漁場分布與海面高度的關(guān)系[J];海洋科學(xué);2008年11期
相關(guān)會議論文 前6條
1 唐峰華;靳少非;張勝茂;楊勝龍;崔雪森;樊偉;;海洋環(huán)境對北太平洋柔魚漁場分布的影響研究[A];2012年中國水產(chǎn)學(xué)會學(xué)術(shù)年會論文摘要集[C];2012年
2 李靈智;;大西洋金槍魚延繩釣漁場的地統(tǒng)計分析[A];海峽兩岸海洋漁業(yè)資源養(yǎng)護和共同開發(fā)青年科學(xué)家研討會論文摘要集[C];2013年
3 楊銘霞;陳新軍;;基于地統(tǒng)計學(xué)插值法的西北太平洋柔魚中心漁場分析[A];2013年中國水產(chǎn)學(xué)會學(xué)術(shù)年會論文摘要集[C];2013年
4 陳雪冬;崔雪森;樊偉;沈建華;周蘇芳;張晶;;海水表層溫度空間可視化與時空變化分析模型的開發(fā)研究[A];中國水產(chǎn)學(xué)會第五屆青年學(xué)術(shù)年會摘要集[C];2004年
5 唐峰華;張勝茂;楊勝龍;崔雪森;樊偉;;海洋環(huán)境要素對北太平洋柔魚中心漁場時空分布的影響效應(yīng)[A];漁業(yè)科技創(chuàng)新與發(fā)展方式轉(zhuǎn)變——2011年中國水產(chǎn)學(xué)會學(xué)術(shù)年會論文摘要集[C];2011年
6 唐峰華;靳少非;崔雪森;張衡;化成君;范秀梅;樊偉;;基于遙感和GIS技術(shù)的海洋環(huán)境對北太平洋柔魚(Ommastrephe bartrami)漁場的影響研究[A];2013中國環(huán)境科學(xué)學(xué)會學(xué)術(shù)年會論文集(第六卷)[C];2013年
相關(guān)重要報紙文章 前1條
1 遼寧省大連海洋漁業(yè)集團公司總經(jīng)理 許兆濱;創(chuàng)新力[N];中國漁業(yè)報;2005年
相關(guān)博士學(xué)位論文 前3條
1 高峰;基于提升回歸樹的東、黃海鮐魚漁場預(yù)報模型研究[D];上海海洋大學(xué);2016年
2 官文江;基于海洋遙感的東、黃海鮐魚漁場與資源研究[D];華東師范大學(xué);2008年
3 樊偉;衛(wèi)星遙感漁場漁情分析應(yīng)用研究——以西北太平洋柔魚漁業(yè)為例[D];華東師范大學(xué);2004年
相關(guān)碩士學(xué)位論文 前3條
1 陳銀濤;印度尼西亞阿拉弗拉海底層主捕經(jīng)濟魚類漁場分布與環(huán)境因子的關(guān)系[D];上海海洋大學(xué);2015年
2 陳峰;西北太平洋柔魚漁場與水溫垂直結(jié)構(gòu)關(guān)系[D];上海海洋大學(xué);2011年
3 徐冰;秘魯外海莖柔魚漁場時空分布及資源補充量與環(huán)境的關(guān)系[D];上海海洋大學(xué);2012年
本文編號:1903625
本文鏈接:http://sikaile.net/shoufeilunwen/nykjbs/1903625.html