華北平原小麥—玉米體系不同養(yǎng)分管理模式產(chǎn)量與養(yǎng)分效率評(píng)價(jià)
本文選題:產(chǎn)量 切入點(diǎn):養(yǎng)分效率 出處:《中國(guó)農(nóng)業(yè)大學(xué)》2017年博士論文
【摘要】:華北平原作是我國(guó)糧食主產(chǎn)區(qū)之一,主要種植體系是冬小麥-夏玉米周年輪作,在保證全國(guó)糧食安全中有重要作用。該地區(qū)小麥玉米生產(chǎn)面臨著單產(chǎn)徘徊不前,肥料、水等外源物質(zhì)投入過(guò)量的問(wèn)題,既降低資源效率又造成環(huán)境問(wèn)題。為了建立該地區(qū)可持續(xù)冬小麥-夏玉米作體系,于2007年在中國(guó)農(nóng)業(yè)大學(xué)高產(chǎn)高效現(xiàn)代農(nóng)業(yè)研究示范基地開(kāi)始了包括三種養(yǎng)分管理模式的長(zhǎng)期定位試驗(yàn),分別為以有機(jī)肥作為養(yǎng)分來(lái)源的在我國(guó)有2000多年歷史的低投入模式、基于小麥玉米高產(chǎn)創(chuàng)建技術(shù)的高投入模式和基于土壤-作物綜合管理技術(shù)實(shí)現(xiàn)養(yǎng)分緊循環(huán)的優(yōu)化模式。本文基于該試驗(yàn)前八個(gè)輪作周期的數(shù)據(jù),從作物生產(chǎn)力、資源效率、土壤質(zhì)量和環(huán)境影響等方面對(duì)不同模式進(jìn)行了綜合分析,主要得出如下結(jié)論:(1)低投入模式養(yǎng)分缺乏嚴(yán)重,尤其是氮,顯著降低地上部生物量和籽粒產(chǎn)量,冬小麥和夏玉米籽粒產(chǎn)量分別只有2.56和6.56 t ha-1。優(yōu)化和高投入模式冬小麥和夏玉米籽粒產(chǎn)量平均比低投入模式增加186%和44%,198%和42%,二者之間通常差異不顯著。(2)因生長(zhǎng)季氣候條件的不同,處理和年型對(duì)冬小麥和夏玉米的影響程度不同。二者對(duì)冬小麥和夏玉米收獲期秸稈產(chǎn)量、籽粒產(chǎn)量、產(chǎn)量構(gòu)成和收獲指數(shù)差異的貢獻(xiàn)率分別在10%~74%和22%~60%,1%~53%和16%~69%之間。處理對(duì)冬小麥的影響大于年型,對(duì)夏玉米的影響則小于年型,或二者相當(dāng)。(3)低養(yǎng)分投入量使低投入模式養(yǎng)分效率通常很高,是一個(gè)高效低產(chǎn)體系,不能滿足糧食需求。優(yōu)化模式冬小麥季養(yǎng)分投入量比高投入模式節(jié)省54%~62%,夏玉米季節(jié)省45%~53%,在保證糧食產(chǎn)量的同時(shí)提高養(yǎng)分效率。優(yōu)化模式冬小麥季、夏玉米季和周年氮、磷和鉀吸收效率平均在0.53~2.53kg kg-1之間,偏生產(chǎn)力平均在57~13kg kg-1之間。但在秸稈還田條件下,三種模式均存在養(yǎng)分盈余。(4)試驗(yàn)所在地降水不能滿足冬小麥-夏玉米體系水分需求,需通過(guò)灌溉補(bǔ)充。水分消耗量的降低和/或籽粒產(chǎn)量的增加使優(yōu)化和高投入模式的水分利用效率平均比低投入模式提高78%~152%和 66%~165%。(5)整體而言,三種養(yǎng)分管理模式土壤肥力均有所提高,但高投入模式存在磷淋洗、酸化和鹽漬化程度增強(qiáng)的風(fēng)險(xiǎn)。不同處理對(duì)酶活性、微生物量碳和氮有顯著影響,但是對(duì)磷脂脂肪酸影響很小。(6)低投入模式土壤無(wú)機(jī)氮含量一直較低,環(huán)境風(fēng)險(xiǎn)小。大量氮肥投入增加高投入模式土壤無(wú)機(jī)氮含量,向深層土壤(90 cm)淋洗明顯,淋洗深度可達(dá)300cm。與其相比,優(yōu)化氮肥用量可減少作物收獲后0-90 cm 土層無(wú)機(jī)氮?dú)埩袅?2~284.5 kg ha-1,使無(wú)機(jī)氮的累積高峰保持在0-30 cm土層。綜上所述,優(yōu)化模式既節(jié)省了大量投入又保證了產(chǎn)量。雖然仍存在養(yǎng)分盈余,但實(shí)現(xiàn)了養(yǎng)分效率的提高,降低環(huán)境風(fēng)險(xiǎn),同時(shí)保持了土壤肥力,具有重要實(shí)踐意義。
[Abstract]:The North China Plain is one of the main grain producing areas in China, and the main planting system is the annual rotation of winter wheat and summer corn, which plays an important role in ensuring the national grain security. In order to establish a sustainable winter wheat-summer maize cropping system in this area, the problem of excessive input of water and other foreign substances will not only reduce the efficiency of resources but also cause environmental problems. In 2007, a long-term positioning experiment including three nutrient management models was started in the demonstration base of high yield and high efficiency modern agriculture of China Agricultural University, which is a low input model with organic fertilizer as a nutrient source in China for more than 2000 years. High input model based on high yield of wheat and maize and optimization model of nutrient tight cycling based on integrated soil-crop management technology. Based on the data of the first eight rotation periods of the experiment, this paper analyzed the crop productivity and resource efficiency. The comprehensive analysis of different models in soil quality and environmental impact showed that the nutrient deficiency of the low input model was serious, especially nitrogen, which significantly reduced the aboveground biomass and grain yield. The grain yields of winter wheat and summer maize were only 2.56 and 6.56 t ha-1, respectively. The grain yield of winter wheat and summer maize increased by 18.6% and 44% and 42%, respectively, compared with the low input model, and the difference between them was not significant. (2) because of the growing season, the grain yield of winter wheat and summer maize was increased by 18.6% and 44%, respectively. Different climatic conditions, The effects of treatment and year type on winter wheat and summer maize were different, and they had different effects on straw yield and grain yield at harvest stage of winter wheat and summer corn. The contribution rates of the difference in yield composition and harvest index were 1074% and 220.60%, respectively, between 53% and 1669%. The effect of treatment on winter wheat was greater than that on annual type, and the effect on summer maize was smaller than that on summer maize. Or the two are equivalent. (3) low nutrient input makes the low input model usually very efficient, and it is a highly efficient and low yield system. The nutrient input in winter wheat season is less than that in high input mode, and in summer maize season, it saves 45553 and increases nutrient efficiency while ensuring grain yield. The optimized model can save nitrogen in winter wheat season, summer corn season and annual nitrogen in winter wheat season, summer corn season and annual nitrogen, and improve the nutrient efficiency of winter wheat season, summer corn season and annual nitrogen. The average uptake efficiency of phosphorus and potassium was between 0.53~2.53kg kg-1 and the average productivity of 57~13kg kg-1. However, under the condition of straw returning to the field, there was nutrient surplus in all the three models. The precipitation in the site of the experiment could not meet the water demand of winter wheat-summer maize system. The decrease in water consumption and / or the increase in grain yield through irrigation supplementation increase the water use efficiency of the optimized and high-input models by an average of 780.152% and 660.165% compared to the low-input model.) overall, the water use efficiency of the optimized and high-input models is 78% higher than that of the low-input model. The soil fertility of all three nutrient management models increased, but the high input model had the risk of phosphorus leaching, acidification and salinization. Different treatments had significant effects on enzyme activity, microbial biomass carbon and nitrogen. However, the effect on phospholipid fatty acids was very small. (6) the inorganic nitrogen content in the low input model soil was lower and the environmental risk was small. A large amount of nitrogen fertilizer input increased the inorganic nitrogen content in the high input model soil, and then reached 90 cm to the deep soil. The elution depth can reach 300 cm. Compared with it, optimizing the amount of nitrogen fertilizer can reduce the residual amount of inorganic nitrogen in 0-90 cm soil layer after harvest, and keep the accumulation peak of inorganic nitrogen in 0-30 cm soil layer, so that the accumulation peak of inorganic nitrogen can be maintained in 0-30 cm soil layer. The optimization model not only saves a large amount of input but also ensures the yield. Although there is still a nutrient surplus, it can improve nutrient efficiency, reduce environmental risk and maintain soil fertility, which is of great practical significance.
【學(xué)位授予單位】:中國(guó)農(nóng)業(yè)大學(xué)
【學(xué)位級(jí)別】:博士
【學(xué)位授予年份】:2017
【分類(lèi)號(hào)】:S513;S512.1
【參考文獻(xiàn)】
相關(guān)期刊論文 前10條
1 龐會(huì)從;劉福亮;付海燕;付勝霞;李曉玉;張燦燦;高太忠;;2009—2014年河北平原淺層地下水硝態(tài)氮特征及其來(lái)源[J];環(huán)境工程學(xué)報(bào);2015年10期
2 冀詠贊;閆慧敏;劉紀(jì)遠(yuǎn);匡文慧;胡云鋒;;基于MODIS數(shù)據(jù)的中國(guó)耕地高中低產(chǎn)田空間分布格局[J];地理學(xué)報(bào);2015年05期
3 王秀麗;孫君茂;;中國(guó)小麥消費(fèi)分析與未來(lái)展望[J];麥類(lèi)作物學(xué)報(bào);2015年05期
4 房琴;王紅光;馬伯威;李東曉;李瑞奇;李雁鳴;;密度和施氮量對(duì)超高產(chǎn)冬小麥群體質(zhì)量和產(chǎn)量形成的影響[J];麥類(lèi)作物學(xué)報(bào);2015年03期
5 冀宏杰;張懷志;張維理;岳現(xiàn)錄;雷秋良;;我國(guó)農(nóng)田磷養(yǎng)分平衡研究進(jìn)展[J];中國(guó)生態(tài)農(nóng)業(yè)學(xué)報(bào);2015年01期
6 曹雯梅;劉松濤;趙威;李莉;王艷霞;楊青華;;小麥高產(chǎn)及超高產(chǎn)優(yōu)化管理模式對(duì)源葉光合特性及產(chǎn)量的調(diào)控效應(yīng)[J];核農(nóng)學(xué)報(bào);2014年12期
7 裴宏偉;沈彥俊;劉昌明;;華北平原典型農(nóng)田氮素與水分循環(huán)[J];應(yīng)用生態(tài)學(xué)報(bào);2015年01期
8 景立權(quán);肖堯;袁建華;趙福成;丁成龍;陸大雷;陸衛(wèi)平;;玉米超高產(chǎn)栽培生理研究進(jìn)展[J];玉米科學(xué);2013年06期
9 張衛(wèi)峰;馬林;黃高強(qiáng);武良;陳新平;張福鎖;;中國(guó)氮肥發(fā)展、貢獻(xiàn)和挑戰(zhàn)[J];中國(guó)農(nóng)業(yè)科學(xué);2013年15期
10 仇煥廣;張世煌;楊軍;井月;;中國(guó)玉米產(chǎn)業(yè)的發(fā)展趨勢(shì)、面臨的挑戰(zhàn)與政策建議[J];中國(guó)農(nóng)業(yè)科技導(dǎo)報(bào);2013年01期
相關(guān)博士學(xué)位論文 前5條
1 李周晶;華北平原不同水肥及栽培模式下的農(nóng)田氮素?fù)p失及水氮利用效率定量評(píng)價(jià)[D];中國(guó)農(nóng)業(yè)大學(xué);2015年
2 顏鵬;支撐夏玉米高產(chǎn)高效群體的根層氮素調(diào)控機(jī)制與途徑[D];中國(guó)農(nóng)業(yè)大學(xué);2015年
3 吳良泉;基于“大配方、小調(diào)整”的中國(guó)三大糧食作物區(qū)域配肥技術(shù)研究[D];中國(guó)農(nóng)業(yè)大學(xué);2014年
4 吳賓;中國(guó)古代糧食安全問(wèn)題研究[D];西北農(nóng)林科技大學(xué);2007年
5 崔振嶺;華北平原冬小麥—夏玉米輪作體系優(yōu)化氮肥管理—從田塊到區(qū)域尺度[D];中國(guó)農(nóng)業(yè)大學(xué);2005年
相關(guān)碩士學(xué)位論文 前1條
1 高利偉;食物鏈氮素養(yǎng)分流動(dòng)評(píng)價(jià)研究[D];河北農(nóng)業(yè)大學(xué);2009年
,本文編號(hào):1660577
本文鏈接:http://sikaile.net/shoufeilunwen/nykjbs/1660577.html