基于智能算法與GIS的灌溉水資源多目標(biāo)優(yōu)化配置
本文關(guān)鍵詞:基于智能算法與GIS的灌溉水資源多目標(biāo)優(yōu)化配置 出處:《中國科學(xué)院研究生院(東北地理與農(nóng)業(yè)生態(tài)研究所)》2016年博士論文 論文類型:學(xué)位論文
更多相關(guān)文章: 灌溉水資源 優(yōu)化配置 多層次多尺度框架 智能算法 GIS技術(shù)
【摘要】:隨著社會、經(jīng)濟(jì)的發(fā)展以及人口數(shù)量的急劇增長,人類對水資源的需求量越來越大。在水資源日益短缺的情況下,科學(xué)合理地規(guī)劃與管理灌溉水資源對提高水分利用率和保障糧食安全具有十分重要的意義。研究人員對此開展了大量卓有成效的工作,但多專注于特定的方面或尺度,深入性很強(qiáng),系統(tǒng)性、整體性較弱。本文從管理的綜合性與技術(shù)的集成性出發(fā),以智能算法在各類模型求解中的應(yīng)用為主線回顧和總結(jié)了前人的研究成果,提出了用于灌溉水資源時空優(yōu)化配置的多層次多尺度框架,闡明了框架內(nèi)各組成部分的基礎(chǔ)理論,并選定盈科試驗灌區(qū)作為研究對象,主要取得了以下幾個方面的成果:(1)灌溉水資源優(yōu)化配置框架的提出本文提出了多尺度多層次的灌區(qū)灌溉水資源優(yōu)化配置框架,整個框架涵蓋灌區(qū)尺度到田間尺度,中間以渠系尺度作為連接,從綜合管理與技術(shù)集成的角度出發(fā)來考慮如何實現(xiàn)灌溉水資源同時在時間與空間上達(dá)到最優(yōu)化配置;可以根據(jù)具體實際情況來建立各類單目標(biāo)或多目標(biāo)模型,并利用現(xiàn)代智能算法對這些模型進(jìn)行求解來制定最優(yōu)配水方案,既可以從空間尺度上總體控制灌溉用水總量,也可以從時間尺度上減少灌溉水量的損失;(2)灌區(qū)尺度灌溉水量優(yōu)化配置首先根據(jù)研究區(qū)實際情況和具體需求構(gòu)建多目標(biāo)灌溉水量優(yōu)化配置模型,并利用由遙感與GIS技術(shù)獲取的數(shù)據(jù)來對模型進(jìn)行實例化處理,采用多目標(biāo)智能算法來求解此模型。在進(jìn)行灌溉水量最優(yōu)配置時考慮了兩種情況,第一種情況是上級渠系來水量是由傳統(tǒng)人工計算所得,此時解算結(jié)果表明,與將這些水量按傳統(tǒng)比例關(guān)系分配至不同作物的人工配水方案相比較,利用多目標(biāo)優(yōu)化配置模型可節(jié)約水量23.51%;第二種情況考慮來水量是由現(xiàn)代科學(xué)的方法,即基于作物需水規(guī)律及田間土壤水分等狀況來計算灌溉所需水量。在此情景下,較之于傳統(tǒng)的配水方案,水量可節(jié)約37.20%,此時,雖然優(yōu)化目標(biāo)之一的灌溉增產(chǎn)總效益與第一種方案基本持平,但優(yōu)化目標(biāo)之二的管理部門水費(fèi)收入?yún)s減少了17.79%。因此,基于帕累托最優(yōu)理論,取折中解,應(yīng)基于第一種方案來制定最優(yōu)灌溉計劃;(3)渠系尺度最優(yōu)輪灌組劃分得到將灌溉水資源量分配至研究區(qū)子區(qū)域不同種類作物的最優(yōu)化方案之后,研究如何將這些灌溉水資源量通過各級渠系輸送至研究區(qū)需水最末端,即在渠系尺度上對灌溉水資源進(jìn)行優(yōu)化分配,采用“組間續(xù)灌,組內(nèi)輪灌”的工作方式,選擇總配水時間最短與輪灌組之間引水持續(xù)時間差異值最小同時作為優(yōu)化目標(biāo),來構(gòu)建多目標(biāo)渠系優(yōu)化配水模型。研究結(jié)果表明通過渠系優(yōu)化配水模型,不論是基于多目標(biāo)粒子群算法,還是多目標(biāo)蟻群算法,其在求解多目標(biāo)渠系優(yōu)化問題時所尋找到的最優(yōu)輪灌組合,并依此來制定的灌溉計劃均優(yōu)于傳統(tǒng)的人工方式。較之于傳統(tǒng)人工方式所規(guī)定的輪灌周期,優(yōu)化后的輪灌周期可節(jié)約時間約32.44%,且在研究中將管理部門此前未曾考慮的各輪灌組之間引水持續(xù)差異值最小這一問題也作為一個需要優(yōu)化的目標(biāo);(4)基于GIS的灌溉水資源管理系統(tǒng)在灌區(qū)尺度和渠系尺度的灌溉水資源得到優(yōu)化配置的基礎(chǔ)上,為提升灌區(qū)管理與決策水平,更加直觀、高效地對灌溉水資源進(jìn)行優(yōu)化配置,基于GIS技術(shù),整合灌溉水資源多目標(biāo)優(yōu)化配置模型以及多目標(biāo)智能算法,來研制開發(fā)基于GIS的灌溉水資源管理系統(tǒng)。既包括地理信息系統(tǒng)基本功能的實現(xiàn),也反應(yīng)了行業(yè)應(yīng)用的特點,具有針對灌溉水資源管理的專業(yè)功能;將系統(tǒng)應(yīng)用于灌區(qū)日常運(yùn)營管理中,可以提升使用者的管理水平與科學(xué)決策能力,提高灌溉水資源利用率;谙到y(tǒng)性策略來研究灌溉水資源優(yōu)化配置問題,既可以從時間尺度上總體控制灌溉用水總量,也可以從空間尺度上減少灌溉水量的損失,為提升灌區(qū)灌溉水資源管理水平,提高水分生產(chǎn)率以保障糧食安全提供科學(xué)依據(jù)與技術(shù)支撐。
[Abstract]:With the social and economic development and rapid population growth, human demand for water resources is more and more big. In the growing shortage of water resources, scientific and rational planning of water resources management and irrigation to improve water use efficiency and food security is of great significance to carry out a large number of researchers. Very fruitful work, but more focused on specific aspects or dimensions, depth is very strong, systematic, holistic weak. The integration of comprehensive technology and management of the intelligent algorithm is applied in all kinds of solution of the model as the main line to review and summarize the previous research results, for multi-level scale framework of irrigation water resources optimization disposition is proposed, clarifies the basic theory of the framework, and selected's irrigation area as the research object, mainly made the following Achievements: (1) irrigation water resources optimal allocation framework proposed by this paper puts forward the optimization of irrigation water resources allocation framework of multi scale and multi levels, the whole framework covering the irrigation to the field scale, as the middle connected by canal scale, from the perspective of comprehensive management and technology integration in view of how to achieve the irrigation water resources at the same time to achieve optimal allocation in time and space; to build all kinds of single target or multi-target model according to the actual situation, and to solve these models in order to develop optimal water allocation scheme using modern intelligent algorithm, which can control the overall irrigation water volume from the spatial scale, can also reduce the amount of irrigation water from the time scale the loss; (2) configuration according to the actual situation of the study area and the specific needs of constructing the multi-objective optimization model of optimal irrigation water irrigation irrigation, And using the obtained by remote sensing and GIS technology for data processing of model instantiation, the multi-objective intelligent algorithm to solve this model. The two cases considered in the optimal allocation of irrigation water, the first is the superior canal water is obtained from the traditional manual calculation, the calculation results show that with the the water by artificial water distribution scheme traditional proportion allocated to different crops compared to the optimal allocation model of water saving by 23.51% multi objectives; second cases considered to water is determined by modern scientific methods, namely crop water requirement and soil water status based on irrigation water required for this. Under the situation, compared with the traditional water allocation scheme, water can be saved by 37.20%, at this time, although the optimization goal of irrigation benefit and the first scheme is basically the same, but the optimization goal two tube Department of water revenue has decreased 17.79%. therefore, based on Pareto optimality theory, take compromise solution, should be the first to formulate the scheme based on the optimal irrigation plan; (3) the optimal irrigation canal scale group divided by the irrigation allocation of water resources to study area sub area crops of different kinds of optimization scheme, study how to the irrigation water resources through all levels of canal system is transported to the study area to the end of the water, water resources in irrigation canal system scale optimization allocation, the group continued irrigation, irrigation group "work, choose the shortest time and the total water irrigation diversion duration differences between groups the minimum value at the same time as the optimization goal, to build a multi-objective optimal allocation of canal water model. The results of the study show that the optimal allocation of canal water model, whether it is a multi-objective particle swarm algorithm based on multi-objective ant colony algorithm, or, in o The optimal solution of multiobjective optimization problem of canal wheel for irrigation combination, and in order to make the artificial irrigation schemes are better than the traditional artificial way. By compared with the traditional irrigation cycle, optimized irrigation cycle time can be saved about 32.44%, and in the study of the management department has not previously considered the continuous irrigation diversion group differences between the minimum value of this problem as an optimization target; (4) based on irrigation water resources management system of GIS based optimal allocation of irrigation water resources in the irrigation canal system and scale, to improve the irrigation management and decision-making level, more intuitive, are the optimal allocation of irrigation water resources efficiently, based on the GIS technology, the integration of irrigation water resources multi-objective optimization model and multi-objective intelligent algorithm developed based on GIS irrigation water resources management system. Both the packet The realization of the basic functions of the geographic information system, also reflects the characteristics of industry application, is for the professional function of irrigation water resources management; the system is applied to the daily operation of irrigation management, can improve the management level of users and scientific decision-making ability, improve the utilization rate of irrigation water resources. The system of strategy based on the research of irrigation water resources optimal allocation problem, not only can the overall control of irrigation water from the total time scale, but also from the spatial scale to reduce irrigation water loss, to enhance the level of irrigation water management in irrigation area, improve water productivity in order to ensure food safety and provide scientific basis and technical support.
【學(xué)位授予單位】:中國科學(xué)院研究生院(東北地理與農(nóng)業(yè)生態(tài)研究所)
【學(xué)位級別】:博士
【學(xué)位授予年份】:2016
【分類號】:S274
【參考文獻(xiàn)】
相關(guān)期刊論文 前10條
1 高偉增;趙明富;汪志農(nóng);古樂聲;;渠道輪灌配水優(yōu)化模型與復(fù)合智能算法求解[J];干旱地區(qū)農(nóng)業(yè)研究;2011年06期
2 夏軍;劉春蓁;任國玉;;氣候變化對我國水資源影響研究面臨的機(jī)遇與挑戰(zhàn)[J];地球科學(xué)進(jìn)展;2011年01期
3 周劍;李新;王根緒;趙潔;;黑河流域中游地下水時空變異性分析及其對土地利用變化的響應(yīng)[J];自然資源學(xué)報;2009年03期
4 張國華;張展羽;邵光成;殷國璽;;基于粒子群優(yōu)化算法的灌溉渠道配水優(yōu)化模型研究[J];水利學(xué)報;2006年08期
5 朱仕杰;南卓銅;;基于ArcEngine的GIS軟件框架建設(shè)[J];遙感技術(shù)與應(yīng)用;2006年04期
6 程國棟;肖洪浪;徐中民;李錦秀;陸明峰;;中國西北內(nèi)陸河水問題及其應(yīng)對策略——以黑河流域為例[J];冰川凍土;2006年03期
7 王鵬;;基于pareto front的多目標(biāo)遺傳算法在灌區(qū)水資源配置中的應(yīng)用[J];節(jié)水灌溉;2005年06期
8 王玫,朱云龍,何小賢;群體智能研究綜述[J];計算機(jī)工程;2005年22期
9 宋松柏,呂宏興;灌溉渠道輪灌配水優(yōu)化模型與遺傳算法求解[J];農(nóng)業(yè)工程學(xué)報;2004年02期
10 崔遠(yuǎn)來;非充分灌溉優(yōu)化配水技術(shù)研究綜述[J];灌溉排水;2000年01期
相關(guān)博士學(xué)位論文 前1條
1 朱秀珍;大型灌區(qū)運(yùn)行狀況綜合評價研究[D];武漢大學(xué);2005年
,本文編號:1426938
本文鏈接:http://sikaile.net/shoufeilunwen/nykjbs/1426938.html