天堂国产午夜亚洲专区-少妇人妻综合久久蜜臀-国产成人户外露出视频在线-国产91传媒一区二区三区

亞高溫強(qiáng)光脅迫下番茄幼苗光抑制及光保護(hù)機(jī)制研究

發(fā)布時(shí)間:2018-01-10 05:00

  本文關(guān)鍵詞:亞高溫強(qiáng)光脅迫下番茄幼苗光抑制及光保護(hù)機(jī)制研究 出處:《沈陽(yáng)農(nóng)業(yè)大學(xué)》2016年博士論文 論文類型:學(xué)位論文


  更多相關(guān)文章: 亞高溫強(qiáng)光 光合作用 光抑制 光保護(hù) 番茄


【摘要】:設(shè)施蔬菜栽培是我國(guó)現(xiàn)代農(nóng)業(yè)生產(chǎn)重要組成部分,番茄(Solanum lycopersicum L.)作為我國(guó)北方地區(qū)溫室栽培的主要蔬菜作物之一,在設(shè)施越夏栽培過程中常遭受高溫和強(qiáng)光的雙重脅迫,導(dǎo)致植株產(chǎn)量和果實(shí)品質(zhì)下降,嚴(yán)重制約設(shè)施蔬菜產(chǎn)業(yè)發(fā)展。因此,研究高溫強(qiáng)光對(duì)設(shè)施蔬菜的影響,特別是東北地區(qū)亞高溫強(qiáng)光對(duì)設(shè)施番茄光合作用的影響,進(jìn)而加深人們對(duì)光合作用規(guī)律的認(rèn)知并因地、因時(shí)制定相關(guān)防控措施,以緩解逆境障礙,從而保證高產(chǎn)、優(yōu)質(zhì)栽培,顯得尤為重要。本文以番茄品種“遼園多麗”為試材,研究了亞高溫強(qiáng)光誘導(dǎo)番茄幼苗葉片光合作用及光系統(tǒng)抑制的機(jī)理及D1蛋白周轉(zhuǎn)、葉黃素循環(huán)、環(huán)式電子傳遞、線性電子傳遞等途徑在亞高溫強(qiáng)光脅迫下番茄葉片中的光保護(hù)作用機(jī)制,主要研究結(jié)果如下:1.明確了亞高溫強(qiáng)光脅迫對(duì)番茄葉片光合作用的影響。研究表明亞高溫強(qiáng)光導(dǎo)致植株葉片光合速率下降,非氣孔因素是主要限制因素。研究結(jié)果顯示,與對(duì)照(CK,25℃, 500 μmol·m~(-2)·s~(-1))植株相比,亞高溫強(qiáng)光脅迫(HH,35℃,1000μmol·m~(-2)·s~(-1)引起番茄葉片凈光合速率(Pn)、氣孔導(dǎo)度(Gs)、蒸騰速率(Tr)及氣孔限制值(Ls)大幅下降,而胞間CO_2濃度(Ci)大幅升高,此外,Rubisco酶活性及其大小亞基(rbcL和rbcS)基因相對(duì)表達(dá)量顯著低于對(duì)照,說明非氣孔因素起主導(dǎo)作用。2.明確了亞高溫強(qiáng)光脅迫對(duì)光系統(tǒng)Ⅱ (PS Ⅱ)的影響。研究發(fā)現(xiàn),亞高溫強(qiáng)光脅迫導(dǎo)致番茄葉片PSⅡ最大光化學(xué)效率(Fv/Fm)、PS Ⅱ天線轉(zhuǎn)化效率(Fv'/Fm')、PS Ⅱ潛在活性(Fv/Fo)、PSⅡ光下實(shí)際光化學(xué)效率[Y(Ⅱ)]、 PS Ⅱ電子傳遞速率[ETR(Ⅱ)]顯著下降,與此同時(shí)PS Ⅱ光化學(xué)效率[Y(NO)]和PS Ⅱ非光化學(xué)效率[Y(NPQ)]顯著升高,而反映PS Ⅱ反應(yīng)中心失活狀態(tài)的最大熒光(Fm)和初始熒光(Fo)及反映PS Ⅱ反應(yīng)中心開放程度的光化學(xué)淬滅系數(shù)(qP)也顯著降低,這說明亞高溫強(qiáng)光脅迫引起PS Ⅱ反應(yīng)中心關(guān)閉并發(fā)生不可逆失活,進(jìn)而引起PSⅡ光化學(xué)效率的降低,從而導(dǎo)致PSⅡ發(fā)生光抑制和光破壞。而且亞高溫強(qiáng)光處理導(dǎo)致的PSⅡ光抑制和光破壞的程度隨著脅迫時(shí)間的增加而加重。3.明確了亞高溫強(qiáng)光脅迫對(duì)光系統(tǒng)I(PS Ⅰ)的影響。研究表明,亞高溫強(qiáng)光處理后,番茄葉片PS Ⅰ光下實(shí)際光化學(xué)效率[Y(Ⅰ)]、PSI電子傳遞速率[ETR(Ⅰ)]極顯著下降,說明PS Ⅰ受到光抑制。由于Y(Ⅰ)下降是PS Ⅰ受體側(cè)量子效率[Y(NA)]顯著下降和PS Ⅰ供體側(cè)量子效率[Y(ND)]顯著上升引起的,我們推測(cè)過剩光能引起PS Ⅱ電子傳遞受阻并在PS Ⅰ供體側(cè)積累,從而導(dǎo)致PS Ⅰ供體側(cè)光抑制;同時(shí)Rubisco酶活性下降導(dǎo)致電子在PS Ⅰ受體側(cè)積累,進(jìn)而發(fā)生PS Ⅰ受體側(cè)光抑制。4.明確了亞高溫強(qiáng)光脅迫對(duì)活性氧(ROS)代謝的影響。研究結(jié)果發(fā)現(xiàn),亞高溫強(qiáng)光脅迫引起番茄葉片中丙二醛(MDA)和H_2O_2含量顯著上升,可溶性蛋白(Sp)和游離脯氨酸(Pro)含量顯著下降,而細(xì)胞相對(duì)電導(dǎo)率(K)和細(xì)胞膜受損程度(α)升高,說明亞高溫強(qiáng)光導(dǎo)致番茄體內(nèi)ROS大量積累,嚴(yán)重破壞細(xì)胞膜并導(dǎo)致膜內(nèi)物質(zhì)外流。此外我們還發(fā)現(xiàn)亞高溫強(qiáng)光處理導(dǎo)致番茄葉片超氧化物歧化酶(SOD)和過氧化物酶(POD)活性嚴(yán)重下降,(Cu/Zn)SOD、GR基因相對(duì)表達(dá)量顯著降低,而過氧化氫酶(CAT)活性提高,(Mn)SOD、APX基因相對(duì)表達(dá)量顯著升高,說明逆境誘導(dǎo)ROS清除系統(tǒng)清除ROS,但亞高溫強(qiáng)光脅迫嚴(yán)重抑制了相關(guān)抗氧化酶活性,造成ROS不能及時(shí)清除并在植株體內(nèi)大量積累,進(jìn)而導(dǎo)致ROS代謝失衡并破壞光合作用和光合系統(tǒng)。5.明確了亞高溫強(qiáng)光脅迫下D1蛋白周轉(zhuǎn)和葉黃素循環(huán)對(duì)番茄葉片光合作用和保衛(wèi)細(xì)胞的影響。研究結(jié)果表明,與對(duì)照植株相比,硫酸鏈霉素(SM)和二硫蘇糖醇(DTT)處理導(dǎo)致番茄葉片Pn、表觀量子效率(AQY)降低,與此同時(shí)氣孔數(shù)目、保衛(wèi)細(xì)胞和氣孔的寬、面積降低,而保衛(wèi)細(xì)胞和氣孔長(zhǎng)、長(zhǎng)寬比增加,說明D1蛋白周轉(zhuǎn)或葉黃素循環(huán)被破壞誘導(dǎo)氣孔關(guān)閉和氣孔數(shù)量減少,減弱了植株對(duì)光的利用能力,光合作用受抑制。6.明確了亞高溫強(qiáng)光脅迫下D1蛋白周轉(zhuǎn)和葉黃素循環(huán)對(duì)番茄葉片光抑制的影響。結(jié)果顯示,SM和DTT處理引起Fv/Fm、Fv/Fo、Y(Ⅱ)、qP極顯著降低,在轉(zhuǎn)錄和翻譯水平上分別導(dǎo)致psbA基因下調(diào)表達(dá)和D1蛋白含量降低,說明D1蛋白循環(huán)和葉黃素循環(huán)被破壞引起PS Ⅱ核心蛋白在分子和蛋白水平上受損,進(jìn)而造成D1蛋白的凈損失,最終導(dǎo)致PS Ⅱ反應(yīng)中心被破壞,發(fā)生嚴(yán)重光抑制。此外,我們還發(fā)現(xiàn)SM和DTT處理導(dǎo)致葉片總?cè)~綠素含量顯著降低及葉綠素a (Cha)和葉綠素b (Chb)含量比(Cha/Chb)升高,說明D1蛋白循環(huán)和葉黃素循環(huán)被破壞提高了捕光色素復(fù)合體對(duì)氧化脅迫的敏感性,導(dǎo)致葉片天線色素被破壞。7.明確了亞高溫強(qiáng)光脅迫下D1蛋白周轉(zhuǎn)和葉黃素循環(huán)對(duì)番茄葉片ROS的影響。采用熒光染料DHE和DCFH-DA分別對(duì)番茄葉片保衛(wèi)細(xì)胞中的02·-和H202進(jìn)行染色觀察,并結(jié)合其活體染色觀察發(fā)現(xiàn)亞高溫強(qiáng)光脅迫導(dǎo)致保衛(wèi)細(xì)胞和葉片中ROS大量積累,SM和DTT處理大大加深了保衛(wèi)細(xì)胞中ROS的熒光強(qiáng)度和葉片染色深度;此外,抗氧化酶活性如CAT、POD和SOD,及總抗氧化能力(T-AOC)也被強(qiáng)烈抑制,說明D1蛋白循環(huán)和葉黃素循環(huán)被破壞誘導(dǎo)植株抗氧化能力降低,ROS不能清除,保衛(wèi)細(xì)胞中ROS含量增加,進(jìn)而導(dǎo)致氣孔關(guān)閉。8.明確了亞高溫強(qiáng)光脅迫下環(huán)式電子傳遞(CEF)和線性電子傳遞(LEF)對(duì)番茄葉片能量分配的影響。結(jié)果顯示,甲基紫精(MV)和敵草隆(DCMU)處理導(dǎo)致番茄葉片分配于PS Ⅱ的光能(β)、PS Ⅱ天線熱耗散能(D)急劇上升,而分配于PS Ⅰ的光能(α)、PS Ⅱ光化學(xué)反應(yīng)能(P)、有活性PS Ⅱ反應(yīng)中心過剩能(E)急劇下降,說明CEF和LEF被抑制誘導(dǎo)能量過剩及激發(fā)能分配失衡,而大量分配于PSⅡ的激發(fā)能導(dǎo)致反應(yīng)中心被破壞而不能進(jìn)行光化學(xué)反應(yīng)。9.明確了亞高溫強(qiáng)光脅迫下CEF和LEF對(duì)光抑制的影響。研究結(jié)果顯示,MV和DCMU處理造成Fv/Fm、Fv'/Fm'、qP極大降低,PSⅡ激發(fā)壓(1-qP)極大升高,說明CEF和LEF被抑制造成PS Ⅱ反應(yīng)中心失活,甚至被降解且無(wú)法恢復(fù),可見CEF和LEF對(duì)亞高溫強(qiáng)光逆境下番茄葉片PS Ⅰ和PSⅡ反應(yīng)中心的光保護(hù)作用極為重要。10.明確了亞高溫強(qiáng)光脅迫下CEF和LEF對(duì)跨膜質(zhì)子動(dòng)力勢(shì)(pmf)的影響。我們研究發(fā)現(xiàn),MV和DCMU處理顯著降低了番茄葉片的pmf及其組分跨膜質(zhì)子梯度(△pH)和跨膜電勢(shì)(△Ψ)。同時(shí)測(cè)定葉片P515信號(hào)發(fā)現(xiàn)MV和DCMU處理后,番茄葉片暗適應(yīng)后P515信號(hào)衰減快速下降,葉片預(yù)照光后則緩慢下降,說明類囊體膜完整性被破壞及ATP-ase活性被嚴(yán)重抑制。
[Abstract]:Vegetable cultivation in China is an important part of modern agricultural production, the tomato (Solanum lycopersicum L.) as one of the most important vegetable crops in Greenhouse in North China in summer, facilities often suffer from high temperature and strong light stress during the process of cultivation, resulting in a decline in plant yield and fruit quality, facilities seriously restrict the development of vegetable industry. Therefore, effects of high temperature and strong light on the vegetable, especially the influence of the Northeast Asia high temperature and strong light of tomato photosynthesis, and thus deepen the cognition of the law of photosynthesis and because, when formulating the relevant prevention and control measures, to alleviate the stress disorder, so as to ensure the high yield, high quality cultivation, is particularly important. This paper in tomato liaoyuanduoli as experimental material, studied the effects of high temperature and strong light induced inhibition and the mechanism of D1 protein in leaves of tomato seedlings photosynthesis and photosystem turnover, leaf The flavin ring cycle, electron transfer mechanism, light protective effect of tomato leaves under the linear electron transport pathway in the sub high temperature and strong light stress, the main results are as follows: 1. to understand the effects of high temperature and strong light stress on the photosynthesis of tomato leaves. The results show that the sub high temperature and strong light caused leaf photosynthetic rate decreased, the non stomatal factors are the main limiting factor. The results of the study showed that compared with the control (CK, 25 C, 500 mol - m~ (-2) - s~ (-1)) were compared, sub high temperature and strong light stress (HH, 35 C, 1000 mol - m~ (-2) - s~ (-1) caused by the net photosynthetic rate of tomato (Pn), stomatal conductance (Gs), transpiration rate (Tr) and stomatal limitation (Ls) decreased significantly, while the intercellular CO_2 concentration (Ci) significantly increased, in addition, enzyme activity and size of Rubisco subunits (rbcL and rbcS) gene expression was significantly lower than that of light, that non stomatal factors play the leading role of high clear.2. Wen Qiangguang stress on photosystem II (PS II). The study found that the sub high temperature and strong light stress caused tomato the maximum photochemical efficiency of PS (Fv/Fm), PS II antenna conversion efficiency (Fv'/Fm'), PS (Fv/Fo), potential activity of PS II light actual photochemical efficiency of [Y (II)], PS II the electron transfer rate [ETR (II)] decreased significantly at the same time, PS II photochemical efficiency of [Y (NO)] and PS II non photochemical efficiency of [Y (NPQ)] was significantly increased, which reflects the maximum fluorescence of PS II reaction center inactivated state (Fm) and initial fluorescence (Fo) and the photochemical quenching of PS II reaction the center of the open degree of quenching coefficient (qP) were significantly decreased, indicating that the sub high temperature and strong light stress induced by PS II reaction center is closed and the occurrence of irreversible inactivation, and cause a decrease in the photochemical efficiency of PS II PS II, resulting in photoinhibition and photodamage. And sub high temperature and strong light induced by PS II light The degree of inhibition and light damage increased with the increase of stress time and increase the.3. to understand the effects of high light stress on photosystem I (PS 1) effect. The study shows that the sub high temperature and strong light treatment, tomato leaves PS I light the actual photochemical efficiency of [Y (I)], PSI electron transfer rate [ETR (I)] decreased significantly, indicating PS I by photoinhibition. Because Y is PS I (I) decreased the acceptor side of the quantum efficiency of [Y (NA)] was significantly decreased and PS of the donor side of the quantum efficiency of [Y (ND)] significantly rise, we speculate that the excess energy caused by PS II electron transfer was blocked and in PS I donor the side accumulation, which leads to the donor side of PS I photoinhibition; while Rubisco activity declined to electron accumulation in PS receptor and PS receptor side, side light inhibition of.4. to understand the effects of high temperature and strong light stress on active oxygen metabolism (ROS). The results of the study showed that the sub high temperature and strong light stress Cause the malondialdehyde (MDA) in tomato leaves increased significantly and the content of H_2O_2, soluble protein (Sp) and free proline (Pro) content decreased and cell relative conductivity (K) and cell membrane damage (alpha) increased, the high temperature and high light led to a substantial accumulation of ROS in tomato, serious damage to the cell membrane and lead to membrane within the material flow. We also found that the sub high temperature and strong light treatment resulted in tomato leaf superoxide dismutase (SOD) and peroxidase (POD) activity declined seriously, (Cu/Zn) SOD, the relative expression of GR gene was significantly decreased, while catalase (CAT) activity increased, SOD (Mn), the relative expression of APX gene a significant increase in the amount, indicating the stress induced ROS scavenging system ROS removal, but the sub high temperature and strong light stress severely inhibited the antioxidant activity, caused by ROS could not be removed in time and accumulation in plants, leading to ROS damage and metabolic imbalance Photosynthesis and photosynthetic system.5. clear D1 protein turnover and xanthophyll cycle effects on Photosynthesis of tomato leaves and guard cell sub high temperature and strong light stress. The results show that, compared with the control plants, streptomycin sulfate (SM) and two dithiothreitol (DTT) treatment resulted in tomato leaves Pn, apparent quantum efficiency (AQY at the same time) decreased, the number of stomata, guard cells and stomatal width, area reduced, and guard cells and stomatal length, length width ratio increased, D1 protein turnover or xanthophyll cycle destruction induced stomatal closure and decrease the number of pore, weaken the plant capacity of using light, photosynthesis inhibited.6. clear D1 protein the turnover of xanthophyll cycle and the effect of photoinhibition on tomato leaves of high temperature and strong light stress. The results showed that SM and DTT caused Fv/Fm, Fv/Fo, Y (II), qP decreased significantly at the level of transcription and translation respectively. Lead to down-regulation of psbA gene and D1 protein expression decreased, D1 protein cycle and the xanthophyll cycle was destroyed by PS II core protein damage at the molecular and protein levels, resulting in a net loss of D1 protein, resulting in PS II reaction center was destroyed, the occurrence of serious photoinhibition. In addition, we also found that the chlorophyll SM and and DTT caused the total leaf chlorophyll content was significantly reduced a (Cha) and chlorophyll b (Chb) content ratio (Cha/Chb) increased, indicating that D1 protein cycle and xanthophyll cycle destruction enhances the light harvesting complex sensitivity to oxidative stress, resulting in the destruction of blade antenna pigment.7. clear D1 protein turnover and xanthophyll cycle effects on tomato leaf ROS sub high temperature and strong light stress. By using the fluorescent dye DHE and DCFH-DA respectively on tomato leaves in guard cells of 02 - and H202 staining, and combined with the in vivo staining Color observation sub high temperature and strong light stress in guard cell and leaf ROS accumulation, SM and DTT greatly enhance the fluorescence intensity of ROS in guard cells and leaves the dyeing depth; in addition, the activity of antioxidant enzymes such as CAT, POD and SOD, and the total antioxidant capacity (T-AOC) was also strongly inhibited D1 protein cycle xanthophyll cycle and destruction induced reduction in plant antioxidant capacity, ROS can not be removed, ROS content in guard cells increased, leading to stomatal closure.8. clear sub under high temperature and high light stress cyclic electron transport (CEF) and linear electron transfer (LEF) effect on Tomato Leaf energy distribution. The results showed that the methyl viologen (MV) and diuron (DCMU) treatment resulted in light distribution in tomato leaves of PS (beta), PS II antenna heat dissipation (D) increased sharply, and the light distribution in PS I (alpha), PS II (P), photochemical reaction can active PS II Should the center excess energy (E) fell sharply, indicating that CEF and LEF were induced by inhibition of excess energy and excitation energy distribution imbalance, and a lot of excitation can lead to the distribution of PS II reaction center was destroyed and can not clear the photochemical reactions of.9. CEF and LEF on light suppression effects of sub high temperature and strong light stress results. Show that MV and DCMU treatment caused Fv/Fm, Fv'/Fm', qP greatly reduced, PS II excitation pressure (1-qP) increased greatly, indicating that CEF and LEF were inhibited by PS II reaction center inactivation, even being degraded and can not be recovered, the protective effect of CEF and LEF in visible light to strong light and high temperature adversity in tomato leaves under PS 1 and PS II reaction center is very important for.10. CEF and LEF to clear the transmembrane proton motive force of high temperature and strong light stress (PMF) effect. We found that MV and DCMU significantly reduced PMF and tomato leaves the transmembrane proton gradient (pH) And the membrane potential (lpli). Simultaneous determination of leaf P515 signal MV and found that DCMU treated tomato leaves after dark adaptation of P515 signal intensity decreased rapidly, pre illumination of leaves decreased slowly, indicating the destruction of ATP-ase and the activity of thylakoid membrane integrity was severely inhibited.

【學(xué)位授予單位】:沈陽(yáng)農(nóng)業(yè)大學(xué)
【學(xué)位級(jí)別】:博士
【學(xué)位授予年份】:2016
【分類號(hào)】:S641.2

【參考文獻(xiàn)】

相關(guān)期刊論文 前10條

1 Dan LIU;Song LI;Ejazul ISLAM;Jun-ren CHEN;Jia-sen WU;Zheng-qian YE;Dan-li PENG;Wen-bo YAN;Kou-ping LU;;植物修復(fù)的應(yīng)用:毛竹苗對(duì)鉛的積累與耐性研究(英文)[J];Journal of Zhejiang University-Science B(Biomedicine & Biotechnology);2015年02期

2 Dong-feng LIU;Dong ZHANG;Guo-qin LIU;Sayed HUSSAIN;Yuan-wen TENG;;Influence of heat stress on leaf ultrastructure, photosynthetic performance, and ascorbate peroxidase gene expression of two pear cultivars(Pyrus pyrifolia)[J];Journal of Zhejiang University-Science B(Biomedicine & Biotechnology);2013年12期

3 尹海龍;田長(zhǎng)彥;;氮調(diào)控對(duì)鹽環(huán)境下甜菜功能葉光系統(tǒng)Ⅱ熒光特性的影響[J];植物生態(tài)學(xué)報(bào);2013年02期

4 陳新斌;孫錦;郭世榮;陸曉民;何立中;嚴(yán)蓓;;二硫蘇糖醇對(duì)海水脅迫下菠菜活性氧代謝及葉綠素?zé)晒馓匦缘挠绊慬J];園藝學(xué)報(bào);2012年12期

5 張子山;楊程;高輝遠(yuǎn);王未未;孫學(xué)娟;孟祥龍;孟慶偉;;低溫光抑制恢復(fù)過程中黃瓜葉片PSⅡ活性及其電子傳遞對(duì)PSⅠ的影響[J];應(yīng)用生態(tài)學(xué)報(bào);2012年04期

6 唐婷;鄭國(guó)偉;李唯奇;;植物光合系統(tǒng)對(duì)高溫脅迫的響應(yīng)機(jī)制[J];中國(guó)生物化學(xué)與分子生物學(xué)報(bào);2012年02期

7 李天來(lái);趙樂;華利靜;趙旭;段敏敏;;晝間亞高溫影響番茄葉片光合及PSⅡ活性的鈣素調(diào)控作用[J];華北農(nóng)學(xué)報(bào);2011年03期

8 秦舒浩;王娜;張文莉;;高溫強(qiáng)光脅迫對(duì)西葫蘆幼苗光合生理特性及熒光參數(shù)的影響[J];揚(yáng)州大學(xué)學(xué)報(bào)(農(nóng)業(yè)與生命科學(xué)版);2011年01期

9 賈永霞;孫錦;王麗萍;束勝;郭世榮;;低氧脅迫下黃瓜植株熱耗散途徑[J];應(yīng)用生態(tài)學(xué)報(bào);2011年03期

10 胡文海;閆小紅;袁麗芳;楊琴;吳章一;;光強(qiáng)在低溫弱光脅迫后番茄葉片光合作用恢復(fù)中的作用[J];植物研究;2011年02期

,

本文編號(hào):1403910

資料下載
論文發(fā)表

本文鏈接:http://sikaile.net/shoufeilunwen/nykjbs/1403910.html


Copyright(c)文論論文網(wǎng)All Rights Reserved | 網(wǎng)站地圖 |

版權(quán)申明:資料由用戶735f1***提供,本站僅收錄摘要或目錄,作者需要?jiǎng)h除請(qǐng)E-mail郵箱bigeng88@qq.com