天堂国产午夜亚洲专区-少妇人妻综合久久蜜臀-国产成人户外露出视频在线-国产91传媒一区二区三区

大興安嶺闊葉混交低質(zhì)林不同改造模式效果的研究

發(fā)布時間:2017-12-28 09:43

  本文關(guān)鍵詞:大興安嶺闊葉混交低質(zhì)林不同改造模式效果的研究 出處:《東北林業(yè)大學(xué)》2015年博士論文 論文類型:學(xué)位論文


  更多相關(guān)文章: 大興安嶺 闊葉混交低質(zhì)林 枯落物 土壤 改造模式


【摘要】:本文以大興安嶺闊葉混交低質(zhì)林為研究對象,通過帶狀6m (S1)、10m (S2)、14m (S3)、18m (S4)和塊狀25m2 (G1)、100m2 (G2)、225m2 (G3)、400m2 (G4)、 625m2 (G5)、900m2 (G6)改造模式進(jìn)行改造后,對各樣地枯落物持水性能、土壤理化性質(zhì)、土壤呼吸速率、物種多樣性、植被生長等指標(biāo)進(jìn)行了連續(xù)5年的觀測,分析了不同改造模式各項(xiàng)指標(biāo)的動態(tài)變化,并且建立了綜合評價模型,對不同改造模式進(jìn)行了綜合評價。研究結(jié)果可以準(zhǔn)確掌握低質(zhì)林改造過程中恢復(fù)的過程及現(xiàn)狀,有助于低質(zhì)林改造措施的開展與調(diào)整,有利于提升大興安嶺林區(qū)低質(zhì)林的經(jīng)營水平,提高森林質(zhì)量和生產(chǎn)力,改善森林的多種生態(tài)功能,對大興安嶺林區(qū)可持續(xù)發(fā)展具有十分重要的意義。研究結(jié)果如下:(1)各改造樣地枯落物蓄積量、最大持水量、有效攔蓄量隨著時間的推移呈現(xiàn)先下降后上升的過程。樣地S2、G2枯落物蓄積量、最大持水量、有效攔蓄量在改造后的第一年(2010年)明顯高于對照樣地(P0.05),在改造后的第二年和第三年(2011年和2012年)不同改造樣地各指標(biāo)都低于對照樣地,到改造后的第五年(2014年)樣地S2、G1、G2、G3枯落物各指標(biāo)都高于對照樣地,帶狀改造樣地中樣地S2枯落物蓄積量(11.14t·hm-2)、最大持水量(60.19t·hm-2)、有效攔蓄量(47.31t·hm-2)最高,塊狀改造樣地中樣地G2枯落物蓄積量(10.37t·hm-2)、最大持水量(58.50t·hm-2)、有效攔蓄量(46.19t·hm-2)最高。各樣地半分解層枯落物蓄積量、最大持水量、有效攔蓄量等指標(biāo)都高于未分解層枯落物。改造后第五年(2014年)各樣地枯落物持水量與浸泡時間之間的關(guān)系滿足對數(shù)曲線,枯落物吸水速率與浸泡時間之間的關(guān)系滿足乘冪曲線。(2)各改造樣地改造后第一年(2010年)土壤結(jié)構(gòu)受到比較嚴(yán)重的破壞,土壤容重較高,土壤水分以及孔隙狀況較差,之后隨著更新植被的生長,土壤物理性質(zhì)在波動過程中逐漸改善。各改造樣地土壤pH值隨時間的推移呈現(xiàn)先下降后上升的過程,同年各改造樣地土壤pH值隨樣地面積增加而上升。各改造樣地土壤有機(jī)質(zhì)、全量養(yǎng)分和速效養(yǎng)分含量在改造后的前兩年明顯高于對照樣地,之后隨時間的推移開始流失下降,甚至低于對照樣地,隨著各改造樣地人工更新苗木以及天然更新植被的生長,土壤養(yǎng)分含量又有所上升。在改造后第五年(2014年),帶狀改造樣地S2、S3,塊狀改造樣地G2、G3,土壤容重較低,持水能力較強(qiáng),孔隙度較大,土壤養(yǎng)分含量較高。(3)各帶狀改造樣地和對照樣地白天土壤呼吸速率均高于夜間土壤呼吸速率,天當(dāng)中土壤呼吸速率最高值一般出現(xiàn)在12:00-15:00,土壤呼吸速率最低值一般出現(xiàn)在23:00-3:00。各改造樣地土壤呼吸速率隨時間的推移先上升后下降,隨后又上升,2014年各改造樣地土壤呼吸速率都低于對照樣地,且差異顯著(P0.05),其中樣地S3土壤呼吸速率(5.84nmol·m-2·s-1)最高。土壤呼吸速率與土壤溫度的關(guān)系適合指數(shù)模型(R2為0.79-0.90),Q10值在2.23~2.66之間,土壤呼吸速率和土壤濕度(9%~27%)呈顯著的二次曲線關(guān)系(R2為0.65-0.85),應(yīng)用雙因素復(fù)合模型擬合效果優(yōu)于單因子模型,土壤溫濕度能夠共同解釋各樣地土壤呼吸速率的70.7%-92.5%。各樣地土壤呼吸速率與土壤總孔隙度、有機(jī)質(zhì)含量存在顯著的正相關(guān)性,與土壤pH、氮含量及半分解枯落物蓄積量相關(guān)性也較高。(4)各樣地在改造后第五年(2014年)喬木層物種樣性評價指數(shù)都低于對照樣地,其中S3的喬木層Shannon-wiener多樣性指數(shù)(1.37)、Pielou均勻度指數(shù)(0.98)最高;各改造樣地灌木層Shannon-wiener多樣性指數(shù)、Pielou均勻度指數(shù)都高于對照樣地,其中S4最高,達(dá)到了1.52、0.95;各改造樣地草本層物種豐富度指數(shù)和Shannon-wiener多樣性指數(shù)都高于對照樣地,其中G6草本層Shannon-wiener多樣性指數(shù)、Pielou均勻度指數(shù)最高,達(dá)到了2.08、0.87。在改造后的5年時間里各改造樣地胸徑和樹高總生長量高于對照樣地,帶狀改造樣地中S2胸徑和樹高總生長量最高,分別達(dá)到了0.58cm、0.76m,塊狀改造樣地中G3胸徑和樹高總生長量最高,分別達(dá)到了0.56cm、0.72m。在改造后第五年(2014年),樣地S3紅松連年生長率(20.47%)最高,連年生長量為6.91cm,樣地S2樟子松連年生長率(20.69%)最高,連年生長量為5.02cm,樣地G4興安落葉松連年生長率(22.05%)最高,連年生長量為14.64cm。各改造樣地苗木保存率隨時間的推移下降幅度減小,在改造后第五年(2014年)樣地S2紅松、樟子松和興安落葉松苗木保存率最高,分別達(dá)到了80.77%、78.85%、82.31%。(5)采用灰色關(guān)聯(lián)分析法對改造后第五年(2014年)不同改造模式建立綜合評價模型,篩選出28個指標(biāo),計算出10種改造模式的灰色關(guān)聯(lián)度,據(jù)此評價各改造模式的改造效果,綜合比較發(fā)現(xiàn),帶狀改造模式總體上優(yōu)于塊狀改造模式,帶狀改造模式中S2和S3改造效果較好,而塊狀改造模式中G2和G3改造效果較好。
[Abstract]:This paper takes Greater Khingan Range broad-leaved low quality forest as the research object, through the strip 6m (S1), 10m (S2), 14m (S3), 18m (S4) and block 25m2 (G1), 100m2 (G2), 225m2 (G3), 400m2 (G4), 625m2 (G5), 900m2 (G6) the transformation mode for the transformation, the kinds of litter water holding properties, soil properties, soil respiration rate, species diversity, vegetation growth and other indicators were observed for 5 years, analyzed the dynamic changes of the indexes of different transformation models, and establish a comprehensive evaluation model for comprehensive evaluation the transformation mode. The research results can accurately grasp the recovery of low-quality forest transformation process and the status quo, development and adjustment to help low quality forest improvement measures, is conducive to enhancing the Greater Khingan Range forest low quality forest management level, improve forest quality and productivity, improve the ecological function of forest energy is of great significance to sustainable development Greater Khingan Range forest region. The results are as follows: (1) the transformation like litter amount and the maximum water holding capacity, storing the amount of effective over time has decreased first and then increased. The first year of plots S2, G2 litter amount and the maximum water holding capacity, effective retaining content in the modified (2010) was significantly higher than the control sample (P0.05), in the transformation after second years and third years (2011 and 2012) of different transformation plots of each index were lower than the control plots, to the transformation of after fifth years (2014), S2 G1, like G2, G3 litter index was higher than the control plots, plots of the strip reform plots S2 litter volume (11.14t, hm-2), the maximum water holding capacity (60.19t - hm-2), storing the amount of effective (47.31t - hm-2) highest bulk modification in plots, plots G2 litter volume (10.37t, hm-2), the maximum water holding capacity (58.50t - hm-2), storing the amount of effective (46.19t - hm-2) highest. Kinds of semi decomposed litter amount and the maximum water holding capacity, storing the amount of effective index is higher than that of the non decomposed litter layer. After fifth years of reform (2014) of the relationship between litter water holding capacity and soaking time meet the logarithm curve and the relationship between litter water absorption rate and soaking time to meet the power curve. (2) in the first year (2010), the soil structure was seriously damaged, and the bulk density of soil was higher, and the soil moisture and pore condition were worse. Then, with the growth of regeneration vegetation, the physical properties of soil gradually improved during the transformation process. The soil pH value of the reformed plots decreased first and then increased with time, and the soil pH value of the reformed plots increased with the area of the sample land in the same year. Two years ago, the content of total nutrient and available nutrient in the transformation of soil organic matter, after the transformation was significantly higher than the control sample, after over time began to drain down, even lower than the control plots, with each kind of transformation artificial regeneration seedling growth and natural regeneration of vegetation, soil nutrient content increased. In the fifth years (2014) after the transformation, the S2 and S3 plots in the strip transformed plots, G2 and G3 in the reclaimed plots, had low soil bulk density, strong water holding capacity, large porosity and high soil nutrient content. (3) soil respiration rates in all plots and plots were higher than those at night. The highest values of soil respiration rate generally appeared in 12:00-15:00, and the lowest value of soil respiration rate was 23:00-3:00. The soil respiration rate of all transformed plots increased first and then decreased, and then increased again. The soil respiration rate of all plots in 2014 was lower than that of the control plots, and the difference was significant (P0.05). The S3 soil respiration rate (5.84nmol. M-2 s-1) was the highest in the plots. The relationship between soil respiration rate and soil temperature for the index model (R2 0.79-0.90), Q10 value in 2.23 ~ 2.66 between soil respiration rate and soil moisture (9% ~ 27%) was two times curve significantly (R2 0.65-0.85), the application of two factor composite model fitting is better than single factor model, soil temperature humidity can explain the soil respiration rate of 70.7%-92.5%. There was a significant positive correlation between soil respiration rate and soil total porosity and organic matter content. The correlation between soil respiration rate and soil pH, nitrogen content and semi decomposition litter volume was also high. (4) of fifth years (2014) in the reconstruction of tree layer species diversity index is lower than that of the control sample, the S3 Shannon-wiener tree layer diversity index (1.37), Pielou evenness index (0.98) the highest; each kind of transformation of shrub layer Shannon-wiener diversity index, Pielou evenness index higher than the control plots, in which S4 is the highest, reaching 1.52, 0.95; each kind of transformation of the herb layer species richness index and diversity index of Shannon-wiener is higher than that of the control sample, the G6 herb layer Shannon-wiener diversity index, Pielou evenness index was the highest, reached 2.08 and 0.87. In the transformation of the 5 years after the transformation of kind of tree height and DBH growth was higher than that of the control sample, S2 diameter and tree belt transformation plots of high total growth was the highest, reached 0.58cm, 0.76M, G3 diameter and tree block transformation plots in high growth was the highest, respectively. 0.56cm, 0.72m. In the reconstruction after fifth years (2014), S3 annual growth rate plots of Pinus koraiensis (20.47%) the highest annual growth amount is 6.91cm, sample S2 annual growth rate of Pinus sylvestris (20.69%) the highest annual growth amount is 5.02cm, G4 plots of Larch in Xingan (22.05%) the highest annual growth rate, the annual growth amount is 14.64cm. The preservation rate of seedlings decreased with time. The preservation rate of S2, Pinus sylvestris, Pinus sylvestris var. mongolica and Larix gmelinii seedlings in Xingan fifth years (2014) was the highest, reaching 80.77%, 78.85% and 82.31% respectively. (5) the comprehensive evaluation model was established by the grey correlation analysis method for different transformation models after the transformation of fifth years (2014).
【學(xué)位授予單位】:東北林業(yè)大學(xué)
【學(xué)位級別】:博士
【學(xué)位授予年份】:2015
【分類號】:S756

【參考文獻(xiàn)】

相關(guān)期刊論文 前10條

1 耿玉清;戴偉;余新曉;陳峻崎;;森林經(jīng)營對土壤酶活性影響的研究進(jìn)展[J];北京林業(yè)大學(xué)學(xué)報;2008年S2期

2 楊學(xué)春;董希斌;姜帆;蒙寬宏;;黑龍江省伊春林區(qū)低質(zhì)林林分評定[J];東北林業(yè)大學(xué)學(xué)報;2009年10期

3 張泱;姜中珠;董希斌;蒙寬宏;;小興安嶺林區(qū)低質(zhì)林類型的界定與評價[J];東北林業(yè)大學(xué)學(xué)報;2009年11期

4 劉美爽;董希斌;郭輝;蒙寬宏;范煜婷;;小興安嶺低質(zhì)林采伐改造后土壤理化性質(zhì)變化分析[J];東北林業(yè)大學(xué)學(xué)報;2010年10期

5 孟春;王立海;沈微;;小興安嶺針闊混交林擇伐6a后林地土壤呼吸速率空間變異性[J];東北林業(yè)大學(xué)學(xué)報;2011年03期

6 張泱;宋啟亮;董希斌;;帶狀皆伐改造對小興安嶺低質(zhì)林土壤養(yǎng)分的影響[J];東北林業(yè)大學(xué)學(xué)報;2013年06期

7 曾翔亮;董希斌;宋啟亮;崔莉;;闊葉混交低質(zhì)林誘導(dǎo)改造后土壤養(yǎng)分的模糊綜合評價[J];東北林業(yè)大學(xué)學(xué)報;2013年09期

8 張泱;曾翔亮;董希斌;宋啟亮;;不同采伐強(qiáng)度后小興安嶺低質(zhì)林土壤養(yǎng)分的灰色聚類評價[J];東北林業(yè)大學(xué)學(xué)報;2014年02期

9 李紅振;李鳳日;賈煒瑋;王樹芳;;大興安嶺不同類型白樺落葉松混交林枯落物水源涵養(yǎng)功能[J];東北林業(yè)大學(xué)學(xué)報;2014年06期

10 毛波;董希斌;宋啟亮;白永清;;大興安嶺白樺低質(zhì)林改造后土壤肥力的綜合評價[J];東北林業(yè)大學(xué)學(xué)報;2014年10期

相關(guān)博士學(xué)位論文 前1條

1 侯淑艷;北京市低山區(qū)低效人工林結(jié)構(gòu)特征與評價研究[D];北京林業(yè)大學(xué);2013年

相關(guān)碩士學(xué)位論文 前3條

1 蔣倩儀;馬尾松低質(zhì)低效次生林經(jīng)營調(diào)控模擬系統(tǒng)研究[D];中南林業(yè)科技大學(xué);2010年

2 宋啟亮;不同類型退化森林誘導(dǎo)改造后森林生態(tài)系統(tǒng)穩(wěn)定性評價[D];東北林業(yè)大學(xué);2012年

3 白艷;不同采伐方式對興安落葉松林分特征及其植物多樣性的影響[D];內(nèi)蒙古農(nóng)業(yè)大學(xué);2012年

,

本文編號:1345558

資料下載
論文發(fā)表

本文鏈接:http://sikaile.net/shoufeilunwen/nykjbs/1345558.html


Copyright(c)文論論文網(wǎng)All Rights Reserved | 網(wǎng)站地圖 |

版權(quán)申明:資料由用戶19afa***提供,本站僅收錄摘要或目錄,作者需要刪除請E-mail郵箱bigeng88@qq.com