番茄光合的光譜效應(yīng)研究
本文關(guān)鍵詞:番茄光合的光譜效應(yīng)研究 出處:《河北農(nóng)業(yè)大學(xué)》2015年博士論文 論文類型:學(xué)位論文
更多相關(guān)文章: 番茄 光質(zhì) 葉片內(nèi)部光分布 光合特性 葉綠素?zé)晒?/b> 果實(shí)
【摘要】:設(shè)施栽培已成為保障蔬菜周年均衡供應(yīng)的一種現(xiàn)代農(nóng)業(yè)方式,然而由于光照不足引起光合能力下降而成為限制設(shè)施蔬菜高產(chǎn)穩(wěn)產(chǎn)的重要因素。因此,深入分析提高光能利用效率的調(diào)控措施及相關(guān)機(jī)制,是光合作用研究的基本內(nèi)容和重要方向,也是挖掘蔬菜作物單葉或群體光合生產(chǎn)力的關(guān)鍵。本研究以番茄(Lycopersicon esculentum Mill.)為試材,針對(duì)葉綠素光吸收與葉片光吸收差異、葉綠素吸收非峰值光譜的葉片內(nèi)部光能利用特征、以及以往紅藍(lán)處理光源的光強(qiáng)偏弱造成光合產(chǎn)物匱乏而對(duì)作物生長(zhǎng)發(fā)育的光質(zhì)信息調(diào)控效應(yīng)難以充分體現(xiàn)的問題,以光譜能量驅(qū)動(dòng)效應(yīng)和信號(hào)調(diào)控效應(yīng)為切入點(diǎn),測(cè)試分析不同光質(zhì)下葉片內(nèi)部光吸收的光譜效應(yīng)、光系統(tǒng)光能捕獲吸收與傳遞轉(zhuǎn)化分配狀況、以及與其相偶聯(lián)的光合酶動(dòng)力學(xué)特性,探明葉片內(nèi)部微觀光截獲特征,同時(shí),結(jié)合光合色素含量、解剖結(jié)構(gòu)、相關(guān)光合酶基因表達(dá)、碳代謝產(chǎn)物的光譜效應(yīng)分析,探索番茄葉片光合器官和光合機(jī)構(gòu)的光質(zhì)適應(yīng)特性及調(diào)控機(jī)制。主要結(jié)果如下:1.研究了單色光質(zhì)LED測(cè)試光源(光纖光譜儀的測(cè)定光源)下番茄葉片的光吸收,結(jié)合葉片結(jié)構(gòu)的能流分配和kubelka-Munk理論(k-m模型)計(jì)算分析了葉片內(nèi)部光分布。從葉片腹面照光(上表皮方向)79.08~88.18%的光合有效輻射PAR被番茄葉片吸收,其余部分被葉片反射(9.82~12.01%)和透射(0.79~5.08%)損失掉了,從背面照光(下表皮方向)獲得的葉片吸收率較腹面照光減少了2.07~4.39%,其中以綠光520 nm降幅最大;從葉片內(nèi)部看,柵欄組織對(duì)藍(lán)光(445 nm、470 nm)的吸收最大(分別為86.32%和83.79%),紅光(625 nm、660 nm)居中(分別為83.38%、82.13%),綠光(520 nm)最低(77.53%),而海綿組織對(duì)光的吸收卻表現(xiàn)出相反的變化趨勢(shì)即520 nm的最高(13.15%),紅光其次(11.64%和13.06%),藍(lán)光最低(6.99%和7.83%)。綜合分析表明,葉片內(nèi)部光質(zhì)光量不僅在空間上分布有很大變化(柵欄組織吸收的光量遠(yuǎn)大于海綿組織),并呈現(xiàn)出光譜特征的不均一性(柵欄組織中富有紅光和藍(lán)光而海綿組織相對(duì)富有綠光)。2.研究了單色光質(zhì)LED測(cè)試光源(Ciras-Ⅱ型便攜式光合儀的測(cè)定光源)下自然光培養(yǎng)的番茄葉片光能傳遞轉(zhuǎn)化分配狀況。從葉綠素?zé)晒鈩?dòng)力學(xué)參數(shù)來看,隨著光強(qiáng)的增加(200~1 500μmol·m-2·s-1,番茄葉片的光抑制發(fā)生以藍(lán)光更為敏感,表現(xiàn)在其照射下番茄葉片PSII最大光化學(xué)量子產(chǎn)量Fv/Fm、PS II實(shí)際量子產(chǎn)量Y(II)、電子傳遞速率ETR和開放的PSⅡ反應(yīng)中心的激發(fā)能捕獲效率Fv'/Fm'下降程度比紅光和綠光更為顯著,而且引起這些參數(shù)明顯下降時(shí)對(duì)應(yīng)的光強(qiáng)較紅光和綠光低。從光抑制的保護(hù)機(jī)制來看,紅光和綠光以PSⅡ調(diào)節(jié)性能量耗散途徑為主,而非調(diào)節(jié)性能量耗散途徑對(duì)藍(lán)光光抑制的保護(hù)能力更強(qiáng)。從光合光響應(yīng)的光譜特征參數(shù)來看,藍(lán)光(470 nm和445 nm)下番茄葉片Pn、LCE和AQY均低于紅光(625 nm、660 nm)和綠光,與以往研究不同的是綠光下番茄葉片Pn較高,當(dāng)PAR高于600μmol·m-2·s-1光強(qiáng)時(shí)520 nm處理下Pn僅次于紅光625 nm;根據(jù)光合CO2響應(yīng)曲線利用Farquhar生化模型擬合計(jì)算的番茄葉片Vcmax、Jmax和磷酸丙糖利用速率TPU均以660 nm為最大,其次為625 nm,而藍(lán)光445 nm最低,反映了在飽和光強(qiáng)和28℃環(huán)境下番茄葉片對(duì)紅光具有較高的光合能力、光合酶活性和生態(tài)適應(yīng)性。3.研究了單色光質(zhì)培養(yǎng)對(duì)番茄植株生長(zhǎng)和葉片光合活性的影響。藍(lán)光(445 nm、460 nm)培養(yǎng)下番茄植株莖粗、干物率、壯苗指數(shù)葉片柵欄組織厚度、柵海比(P/S)、組織緊實(shí)度CTR均高于綠光和紅光,并且在藍(lán)光460 nm處理下尤為明顯,625 nm紅光培養(yǎng)顯著增加了植物地上部分的生物量,促進(jìn)了莖的伸長(zhǎng),但降低了葉片的干重和鮮重;660 nm紅光顯著提高了番茄葉片葉綠素a、葉綠素b含量、葉綠素總含量和類胡蘿卜素含量,但Chla/Chlb值最低;從葉片光吸收情況,460 nm藍(lán)光處理下的番茄葉片吸光度在紅光區(qū)和藍(lán)光區(qū)兩個(gè)主要活躍區(qū)域均為最大,其次為445 nm藍(lán)光,紅光居中,而綠光最小。從葉綠素?zé)晒鈪?shù)看,生長(zhǎng)在不同光質(zhì)下的番茄幼苗葉片F(xiàn)v/Fm和Fv'/Fm'除660 nm紅光顯著低于對(duì)照外,其他處理間無顯著性差異;Y(II)和ETR呈現(xiàn)出相同的變化趨勢(shì),均在625 nm紅光處理下顯著高于對(duì)照,分別比對(duì)照多出7.03%和10.09%,番茄葉片的NPQ值以660 nm紅光最大,其次為460 nm藍(lán)光,綠光最低;從光合參數(shù)來看,番茄Pn和LCE的大小關(guān)系均表現(xiàn)為460 nm藍(lán)光最大,其次445 nm,而綠光和紅光Pn的大小關(guān)系與光照強(qiáng)度有關(guān),低光強(qiáng)下綠光Pn最小,但光強(qiáng)超過480μmol·m-2·s-1時(shí),紅光660nm的Pn最小。445 nm藍(lán)光還顯著提高了葉片Vcmax、Jmax和TPU,其次為460 nm,兩者之間差異不顯著,其次為紅光625 nm和660 nm,綠光下最低;從光合酶相關(guān)基因的表達(dá)來看,625 nm紅光促進(jìn)了rbc S、RCA和GADPH基因的表達(dá),綠光520 nm則促進(jìn)了Cab基因的表達(dá)量,但各光質(zhì)處理間PGK基因表達(dá)量差異不顯著。4.研究了單色光質(zhì)(445 nm、520 nm和660 nm)和熱脅迫對(duì)番茄果實(shí)表面光系統(tǒng)活性的影響。番茄果實(shí)光質(zhì)脅迫結(jié)果表明:隨著光強(qiáng)的增加(200-2500 umol·m-2·s-1),藍(lán)光和紅光處理番茄果實(shí)Fv/Fm、Y(Ⅱ)、ETR和Fv’/Fm’均呈“S”型下降趨勢(shì),光系統(tǒng)間激發(fā)能分配不平衡偏離系數(shù)β/α-1急劇上升,反映出高光強(qiáng)導(dǎo)致光系統(tǒng)間激發(fā)能分配的不平衡,PSⅡ和PSⅠ間線性電子傳遞的協(xié)調(diào)性降低;而綠光處理番茄果實(shí)表面葉綠素?zé)晒鈪?shù)相對(duì)來說變化不大,可能是綠光減少了葉綠素對(duì)光能的過度吸收,使得光抑制程度較輕;藍(lán)光處理番茄果實(shí)表面Fv/Fm、Y(Ⅱ)、電子傳遞速率ETR和Fv’/Fm’均小于紅光和綠光處理,并且隨著光強(qiáng)的增加這種差距越來越明顯,表明藍(lán)光對(duì)光抑制更敏感,更容易受到強(qiáng)光脅迫的影響;另外,當(dāng)光強(qiáng)為200~1000μmol·m-2·s-1時(shí),番茄果實(shí)表面Fv/Fm、Y(Ⅱ)和Fv’/Fm’值紅光綠光,超過1000μmol·m-2·s-1時(shí),則綠光紅光,反映出綠光處理番茄果實(shí)適應(yīng)強(qiáng)光的能力較強(qiáng)。果實(shí)熱脅迫結(jié)果表明:在較低的熱脅迫下(36~43℃),Fv/Fm穩(wěn)中有降,反映溫度脅迫引起PSⅡ功能的部分抑制,而此時(shí)調(diào)節(jié)性能量耗散量子產(chǎn)量Y(NPQ)的增加耗散了過剩光能,以減輕過剩光能對(duì)光合機(jī)構(gòu)的進(jìn)一步傷害;當(dāng)溫度超過43℃時(shí),非調(diào)節(jié)性能量耗散的量子產(chǎn)量Y(NO)顯著增加,Fv/Fm,Fv’/Fm’和ETR急劇下降,Y(NPQ)開始下降,表明PSⅡ反應(yīng)中心的天線色素耗散機(jī)制可能遭到破壞,對(duì)高溫脅迫的自我調(diào)節(jié)功能開始下降,PSⅡ反應(yīng)中心已開始失活,光抑制程度加重;當(dāng)溫度超過果實(shí)表皮PSⅡ蛋白復(fù)合體變性中點(diǎn)溫度51.4℃時(shí),激發(fā)能分配不平衡偏離系數(shù)β/α-1顯著上升,葉綠素?zé)晒馑p率Rfd急劇下降,反映此時(shí)激發(fā)能分配嚴(yán)重失衡,番茄潛在的CO2同化能力極弱。另外,通過對(duì)標(biāo)準(zhǔn)狀態(tài)變性自由能變GD計(jì)算的變性中點(diǎn)溫度Tm得出,Tm(Fv/Fm)大于Tm[Y(Ⅱ)],說明PSⅡ的耐熱性稍強(qiáng)于整個(gè)光合作用。
[Abstract]:Protected cultivation has become a modern agricultural way to ensure the annual balanced supply of vegetables. However, due to the lack of light and the decrease of photosynthetic capacity, it has become an important factor limiting the high and stable yield of vegetable. Therefore, in-depth analysis of the regulation measures and related mechanisms to improve the efficiency of light energy utilization is the basic content and important direction of photosynthesis research, and also the key to excavate vegetable crops' single leaf or colony photosynthetic productivity. In this study, tomato (Lycopersicon esculentum Mill.) as the test material, the chlorophyll absorption within leaf and leaf light absorption difference, chlorophyll absorption spectra by non peak characteristics, and the red and blue light treatment intensity weakness caused by photosynthetic products lack of quality information regulation effect of crop growth is difficult to fully reflect the problem the driving effect, energy spectrum and signal control as the starting point, test and analysis of spectrum effect, leaves light absorption of different light conditions of light absorption and transfer system to capture distribution, transformation and its coupling of photosynthetic enzyme kinetics, explore the internal micro light interception characteristics of leaves at the same time, spectral analysis with light effect the photosynthetic pigment contents, anatomical structure, expression and related light synthase gene carbon metabolites, explore the tomato leaf photosynthetic organs and light The mechanism of light adaptation and regulation mechanism. The main results are as follows: 1. studied monochromatic light LED test source (determination of light fiber spectrometer) in tomato leaves under light absorption, combined with the distribution of energy flow and the theory of kubelka-Munk blade structure (K-M model) to calculate and analyze the light distribution within leaf. From the leaves of ventral light (epidermal direction) 79.08~88.18% photosynthetically active radiation PAR in tomato leaves was absorbed, the rest is leaf reflectance (9.82~12.01%) and transmission (0.79~5.08%) are lost from the back light (under the direction of the leaf epidermis) than the ventral light absorption rate decreased by 2.07~4.39%, which is based on the green 520 nm the largest decline; leaves from the inside, the palisade tissue of blue light (445 nm, 470 nm) absorption maximum (86.32% and 83.79%), red (625 nm, 660 nm) in (83.38%, 82.13%), green (520 nm) and lowest (77.53%), and the absorption of sponge tissue light but showed the opposite trend is up to 520 nm (13.15%), followed by red light (11.64% and 13.06%), the lowest (6.99% and 7.83%) Blu ray. Comprehensive analysis shows that the blade internal light light not only in spatial distribution have great changes (light absorption of palisade tissue than spongy tissue), and presents the heterogeneity of spectral features (rich red and blue in the palisade tissue and spongy tissue is relatively rich green). 2. of the LED light source (monochromatic light source test determination of Ciras- type portable photosynthesis instrument) under natural light culture of tomato leaf radiosity distribution transformation. From the kinetic parameters of chlorophyll fluorescence, with the increase of light intensity (200~1 500 mol - m-2 - s-1, tomato leaves photoinhibition is more sensitive to blue light, in the leaves of Tomato under PSII irradiation the photochemical quantum yield Fv/Fm, PS II Y the actual quantum yield (II), excitation energy capture efficiency of Fv'/Fm'decreased the degree of red and green light is more significant than the PS II reaction center electron transfer rate ETR and open, and the light intensity caused by decreased significantly when compared with the corresponding parameters of red and green low. From the protection mechanism of photoinhibition, red and green light are dominated by PS II regulatory energy dissipation pathway, rather than the regulation of energy dissipation pathway has stronger protection ability against Blu ray. From the photosynthetic spectral characteristic parameters of light response of blue light (470 nm and 445 nm) in tomato leaves under Pn, LCE and AQY were lower than that of red light (625 nm, 660 nm) and green light is different from previous studies of green leaves of Tomato under high Pn, when PAR is higher than 600 mol - m-2 - S-1 intensity when under 520 nm Pn after 625 nm red light; according to the photosynthetic response curve of CO2 calculated by Farquhar biochemical model fitting of tomato leaf Vcmax, Jmax and triose phosphate utilization rate of TPU at 660 nm is the largest, followed by 625 nm, 445 nm and blue light reflected in the lowest saturation intensity and 28 DEG C environment the red tomato leaves with high photosynthetic capacity, photosynthetic enzyme activity and ecological adaptability. 3. of the monochromatic light effect of culture on the growth and photosynthetic activity of tomato leaves. Blue light (445 nm, 460 nm) under cultivation of tomato plant stem diameter, dry matter content, seedling index and leaf thickness, palisade tissue, palisade tissue / spongy tissue compaction (P/S) CTR was higher than that of green and red, and blue light in the treatment of 460 nm and 625 nm red culture is particularly obvious, significantly increased the biomass of plants the object, promote stem elongation, but reduced leaf dry weight and fresh weight; 660 nm red light significantly increased tomato leaf chlorophyll a, chlorophyll b, total chlorophyll content and carotenoid content, but the lowest Chla/Chlb value; from the leaf light absorption situation of tomato leaves 460 nm blue light absorbance under the red and blue area two main active regions were the largest, followed by 445 nm blue light, red light and green light was the smallest. The chlorophyll fluorescence parameters, growth under different light conditions of tomato seedlings were Fv/Fm and Fv'/Fm'in addition to the 660 red nm was significantly lower than the control, no significant difference between other treatments; Y (II) and ETR showed the same trend, both in the 625 nm red light treatment significantly higher than that of control, respectively than control 7.03% and 10.09%, the maximum value of NPQ in tomato leaves with 660 nm red, followed by 460 nm blue light, green light from the lowest; photosynthetic parameters, the size relation of tomato Pn and LCE were performed for 460 nm blue, followed by 445 nm, and little relationship with light green and red light intensity on Pn under low light intensity, but the intensity of the green Pn minimum, more than 480 mol - m-2 - s-1, red 660nm Pn minimum. The 445 nm blue light also significantly increased the Vcmax and Jmax of the leaves
【學(xué)位授予單位】:河北農(nóng)業(yè)大學(xué)
【學(xué)位級(jí)別】:博士
【學(xué)位授予年份】:2015
【分類號(hào)】:S641.2
【參考文獻(xiàn)】
相關(guān)期刊論文 前10條
1 肖漢;陳秀萬(wàn);楊振宇;李懷瑜;朱瀚;;基于光譜分析的草地葉綠素含量估測(cè)植被指數(shù)[J];光譜學(xué)與光譜分析;2014年11期
2 武春霞;楊靜慧;張小娥;劉艷軍;黃俊軒;李建科;;4種豆科植物葉片的解剖結(jié)構(gòu)及抗旱性[J];天津農(nóng)業(yè)科學(xué);2014年11期
3 王海珍;韓路;徐雅麗;牛建龍;;胡楊異形葉光合作用對(duì)光強(qiáng)與CO_2濃度的響應(yīng)[J];植物生態(tài)學(xué)報(bào);2014年10期
4 楊有新;王峰;蔡加星;喻景權(quán);周艷虹;;光質(zhì)和光敏色素在植物逆境響應(yīng)中的作用研究進(jìn)展[J];園藝學(xué)報(bào);2014年09期
5 鄧小蕾;李民贊;鄭立華;張瑤;孫紅;;基于反射光譜預(yù)處理的蘋果葉片葉綠素含量預(yù)測(cè)[J];農(nóng)業(yè)工程學(xué)報(bào);2014年14期
6 孫娜;李巖;魏珉;王秀峰;史慶華;楊鳳娟;米慶華;;補(bǔ)光對(duì)日光溫室越冬番茄生長(zhǎng)及產(chǎn)量品質(zhì)的影響[J];天津農(nóng)業(yè)科學(xué);2014年03期
7 田晨霞;張?jiān)伱?馬暉玲;;草地早熟禾胚胎結(jié)構(gòu)石蠟切片制作方法初探[J];草業(yè)科學(xué);2013年12期
8 王娟;危常州;王肖娟;朱齊超;朱金龍;王金鑫;;采用灰板校正的計(jì)算機(jī)視覺預(yù)測(cè)棉花葉綠素含量[J];農(nóng)業(yè)工程學(xué)報(bào);2013年24期
9 鄔奇;蘇娜娜;崔瑾;;LED光質(zhì)補(bǔ)光對(duì)番茄幼苗生長(zhǎng)及光合特性和抗氧化酶的影響[J];北方園藝;2013年21期
10 劉曉英;焦學(xué)磊;徐志剛;陳彬;;紅藍(lán)LED光對(duì)水稻秧苗形態(tài)建成的影響[J];照明工程學(xué)報(bào);2013年S1期
相關(guān)博士學(xué)位論文 前3條
1 劉志國(guó);棗樹對(duì)植原體侵染的光合響應(yīng)及其抗性誘導(dǎo)研究[D];河北農(nóng)業(yè)大學(xué);2014年
2 梁亮;小麥冠層理化參量的高光譜反演[D];中南大學(xué);2010年
3 王虹;光質(zhì)對(duì)黃瓜幼苗光合效率和白粉病抗性的調(diào)控機(jī)理[D];浙江大學(xué);2009年
相關(guān)碩士學(xué)位論文 前10條
1 白雪嬌;冬小麥氮素營(yíng)養(yǎng)及其冠層生物理化參量高光譜遙感監(jiān)測(cè)[D];西北農(nóng)林科技大學(xué);2013年
2 王春昕;光對(duì)切花菊‘神馬’生長(zhǎng)和開花的影響[D];南京農(nóng)業(yè)大學(xué);2012年
3 馬紹英;LED不同光對(duì)葡萄離體試管苗生理生化特性效應(yīng)的研究[D];甘肅農(nóng)業(yè)大學(xué);2010年
4 薛占軍;茄子碳同化與光系統(tǒng)Ⅱ的穩(wěn)態(tài)和動(dòng)態(tài)特性的研究[D];河北農(nóng)業(yè)大學(xué);2009年
5 李雯琳;LED光源不同光質(zhì)對(duì)葉用萵苣種子發(fā)芽及幼苗生理生化特性的影響[D];甘肅農(nóng)業(yè)大學(xué);2009年
6 吳秀娟;大棚番茄品種比較與耐低溫弱光指標(biāo)的篩選[D];安徽農(nóng)業(yè)大學(xué);2009年
7 高玉;冀東秋黃瓜光系統(tǒng)Ⅱ的耐熱性研究[D];河北農(nóng)業(yè)大學(xué);2008年
8 鄭潔;不同光質(zhì)對(duì)橘橙光合作用的影響及機(jī)理研究[D];浙江大學(xué);2008年
9 杜洪濤;光質(zhì)對(duì)彩色甜椒幼苗生長(zhǎng)發(fā)育特性的影響[D];山東農(nóng)業(yè)大學(xué);2005年
10 劉艷陽(yáng);不同播期對(duì)小麥安全優(yōu)質(zhì)高產(chǎn)特性的影響[D];揚(yáng)州大學(xué);2003年
,本文編號(hào):1341598
本文鏈接:http://sikaile.net/shoufeilunwen/nykjbs/1341598.html