λ-重調(diào)和函數(shù)與相關(guān)Bergman空間中的乘子
發(fā)布時間:2023-03-23 21:17
本文研究與Dunkl算子相關(guān)的重調(diào)和函數(shù)和在相關(guān)的Hardy空間Hλp(D)與Bergman空間Aλp(D)中的函數(shù)乘子問題。前者在對后者的研究中發(fā)揮了本質(zhì)作用。對0<p<∞,與Dunkl算子相關(guān)的Bergman空間Aλp(D)(λ-Bergman空間)是由加權(quán)空間Lλp(D):=Lp(D;|y|2λdxdy)中的λ-解析函數(shù)組成的。本文的研究工作分四個部分。在第一部分,引入了 A-Laplace算子△λ在單位圓盤D上的Green函數(shù)G(z,ζ),并得到了 λ-Green函數(shù)的各種性質(zhì)。這一部分的主要結(jié)果是對u ∈ C2(D),建立了關(guān)于λ-Laplace算子△λ的Green表示。在第二部分,引入了 λ-重Laplace算子△λ2在單位圓盤D上的Green函數(shù)Γ(z,ζ),并證明了 λ-重Laplace算子的Green函數(shù)Γ(z,ζ)的各種性質(zhì)。這一部分的主要結(jié)果是對u ∈C4(D),建立了關(guān)于λ-重Laplace算子△λ2的Green表示。第三部分的目的是研究λ-Hardy空間Hλp(D)和A-Bergman空間Aλp(D)中函數(shù)乘子的壓縮性質(zhì)和膨脹性質(zhì)。文中根據(jù)某種正交...
【文章頁數(shù)】:107 頁
【學(xué)位級別】:博士
【文章目錄】:
摘要
Abstract
研究工作詳細介紹
第一章 Introduction and Main Results
1.1 Motivations of the research
1.2 λ-harmonic and λ-analytic functions
1.3 Some aspects of the theory of the classical Bergman spaces
1.4 Summary of the research work in the thesis
第二章 The λ-Green function and the λ-Green representation
2.1 Preliminaries for the λ-Laplacian
2.2 The fundamental solution associated with the λ-Laplacian
2.3 The λ-Green function and the λ-Green-representation
第三章 The Green function and the Green representation associaated withthe λ-bilaplacian
3.1 The fundamental solution for the λ-bilaplacian
3.2 The Green function and the Green representation associated with the λ-bilaplacian(λ≠1)
3.3 The Green function associated with the λ-bilaplacian(λ=1)
第四章 Multipliers in the λ-Hardy and λ-Bergman spaces
4.1 Introduction
4.2 The subclass Wλ(D)
4.3 On the subclass W0(D)
4.4 The fundamental integral formula for λ-analytic functions
4.5 Contractive and expansive properties of multipliers in the λ-Hardy and λ-Bergman spaces
第五章 A Riesz representation formula for λ-superbiharmonic functions
5.1 λ-superbiharmonic functions
5.2 The λ-biharmonic extension
5.3 Radial λ-superbiharmonic functions
5.4 Estimates of the λ-biharmonic Green function
5.5 The Riesz-type representation formula
參考文獻
Acknowledgements
附件
本文編號:3768769
【文章頁數(shù)】:107 頁
【學(xué)位級別】:博士
【文章目錄】:
摘要
Abstract
研究工作詳細介紹
第一章 Introduction and Main Results
1.1 Motivations of the research
1.2 λ-harmonic and λ-analytic functions
1.3 Some aspects of the theory of the classical Bergman spaces
1.4 Summary of the research work in the thesis
第二章 The λ-Green function and the λ-Green representation
2.1 Preliminaries for the λ-Laplacian
2.2 The fundamental solution associated with the λ-Laplacian
2.3 The λ-Green function and the λ-Green-representation
第三章 The Green function and the Green representation associaated withthe λ-bilaplacian
3.1 The fundamental solution for the λ-bilaplacian
3.2 The Green function and the Green representation associated with the λ-bilaplacian(λ≠1)
3.3 The Green function associated with the λ-bilaplacian(λ=1)
第四章 Multipliers in the λ-Hardy and λ-Bergman spaces
4.1 Introduction
4.2 The subclass Wλ(D)
4.3 On the subclass W0(D)
4.4 The fundamental integral formula for λ-analytic functions
4.5 Contractive and expansive properties of multipliers in the λ-Hardy and λ-Bergman spaces
第五章 A Riesz representation formula for λ-superbiharmonic functions
5.1 λ-superbiharmonic functions
5.2 The λ-biharmonic extension
5.3 Radial λ-superbiharmonic functions
5.4 Estimates of the λ-biharmonic Green function
5.5 The Riesz-type representation formula
參考文獻
Acknowledgements
附件
本文編號:3768769
本文鏈接:http://sikaile.net/shoufeilunwen/jckxbs/3768769.html
最近更新
教材專著