直角域中凸起和夾雜對(duì)SH波的散射和地震動(dòng)
[Abstract]:The earthquake is one of the greatest natural disasters to the human threat. The China is located between the Pacific seismic belt and the Eurasian seismic belt, thus determining the basic national conditions in which the strong earthquakes in China and the earthquake disaster are serious. The earthquake has accumulated enough energy through the movement of the plate in the earth, which is released from the source to the earth's surface through the seismic waves, resulting in a strong earthquake disaster. The earth's surface can be regarded as a stress free surface, and due to the constraints of the free surface, the seismic wave will be reflected on the surface, and the stress anomaly will be generated near the surface. The complex terrain and the existence of the structure of the underground space increase the additional constraint conditions, which are scattered under the action of the seismic wave, and the dynamic stress concentration is induced, resulting in a significant site seismic response. The surface part of the earth can be simplified as an elastic solid, and the seismic wave can be simplified as an elastic wave. According to the relation between the vibration vector and the propagation vector, the seismic wave can be divided into P wave and S wave, and the S wave can be divided into SH wave and SV wave according to the relation between the polarization direction and the observation plane. It is noted that the main part of the earth's surface layer is the rock and soil, the tensile strength and the compressive strength of the rock and soil are obviously different, the shear performance is especially bad, and the shear component of the seismic wave plays an important role in the earthquake disaster. To sum up, a shear component of the seismic body wave is simplified into the SH wave, a local simplification of the earth's surface is simplified into a right-angle domain, and a complex terrain of the surface is simplified into a semi-circular projection, and the structure of the underground space engineering is simplified into a cylindrical inclusion. In this way, the engineering problem of the seismic wave field reaction is abstracted as the scientific problem of the projection and inclusion on the steady-state SH plane wave scattering in the elastic right-angle domain. In this paper, three parts can be divided into three parts. The first part studies the scattering and ground motion of the semi-circular projection in the elastic right-angle domain by the steady SH plane wave. The method comprises the following steps of: dividing a right-angle domain containing a semi-circular protrusion according to a partition matching method to obtain a right-angle domain and a semi-circle domain, and respectively constructing a Green function; and obtaining a fixed-solution integral equation and a numerical solution according to the fitting condition, and obtaining an analytical solution corresponding to a series form of a mathematical physical fixed solution problem. According to the dimensional analysis method, the similarity law and the quasi-number are discussed, and the corresponding dimensionless number, the dimensionless displacement and the dynamic stress concentration factor are obtained. The correctness and precision of the solution are analyzed by numerical results. The convergence and error are evaluated, and the influence of wave number, incident angle and vertical boundary is discussed. The second part studies the scattering and the ground motion of the semi-circular and circular holes in the elastic right-angle domain of the steady SH plane wave. The method comprises the following steps of: dividing a right-angle domain containing a semi-circular protrusion and a circular hole according to a partition matching method to obtain a right-angle domain containing a circular hole and a semi-circle domain, respectively constructing a Green function; solving the steady-state scattering of the circular hole on the plane SH wave in the elastic right-angle domain; and according to the fitting condition, And obtaining a fixed solution integral equation and a numerical solution to obtain a series solution of the problem. The similarity law and the quasi-number are discussed according to the dimensional analysis method. The correctness and precision of the solution are analyzed by numerical results, and the convergence and error are evaluated. The influence of the position and size of the hole and the dynamic stress concentration of the hole edge are discussed. The third part studies the scattering and ground motion of the semi-circular and circular inclusions in the elastic right-angle domain of the steady SH plane wave. The method comprises the following steps of: dividing a right-angle domain containing a semi-circular convex and a round inclusion to obtain a right-angle domain containing a circular inclusion and a semi-circle domain, respectively constructing a Green function; solving the steady-state scattering of the circular inclusion on the plane SH wave in the elastic right-angle domain; and according to the fitting condition, And obtaining a fixed solution integral equation and a numerical solution to obtain a series solution of the problem. The similarity law and the quasi-number are discussed according to the dimensional analysis method. The correctness and precision of the solution are analyzed by numerical results. The convergence and error are evaluated, and the influence of the ratio of the shear modulus of the inclusion and the mass density ratio and the dynamic stress concentration of the inclusion edge are discussed.
【學(xué)位授予單位】:哈爾濱工程大學(xué)
【學(xué)位級(jí)別】:博士
【學(xué)位授予年份】:2016
【分類號(hào)】:O347.4
【相似文獻(xiàn)】
相關(guān)期刊論文 前10條
1 李宏男,L.E.Suarez,,M.P.Singh;地震動(dòng)的轉(zhuǎn)動(dòng)分量[J];地震工程與工程振動(dòng);1997年02期
2 張伯艷,陳厚群,胡曉,朱栗武;合成人造地震動(dòng)的非線性解法[J];水利水電技術(shù);2000年07期
3 范留明,黃潤(rùn)秋;一次沖擊地震動(dòng)的特性研究[J];地質(zhì)災(zāi)害與環(huán)境保護(hù);2000年01期
4 金星,陳超,張明宇,王紹博,丁海平;雙側(cè)破裂模型對(duì)地震動(dòng)空間相關(guān)性影響的定量研究[J];地震工程與工程振動(dòng);2001年01期
5 王國(guó)新,陶夏新;地震動(dòng)衰減關(guān)系擬合的新兩步法[J];地震工程與工程振動(dòng);2001年01期
6 謝異同,張同億,吳敏哲;地震動(dòng)加速度過(guò)程的小波模擬[J];地震工程與工程振動(dòng);2001年02期
7 金星,陳超,張明宇,王紹博,丁海平;雙側(cè)破裂模型對(duì)地震動(dòng)空間相關(guān)性影響的遠(yuǎn)場(chǎng)分析[J];自然災(zāi)害學(xué)報(bào);2001年01期
8 夏友柏,王年橋,鄢常舒;多點(diǎn)地震動(dòng)時(shí)程人工合成[J];解放軍理工大學(xué)學(xué)報(bào)(自然科學(xué)版);2002年03期
9 謝禮立,翟長(zhǎng)海;最不利設(shè)計(jì)地震動(dòng)研究[J];地震學(xué)報(bào);2003年03期
10 戴君武,張敏政,郭迅,齊霄齋;地震動(dòng)的3D瞬態(tài)特征與結(jié)構(gòu)破壞的關(guān)系[J];遼寧工程技術(shù)大學(xué)學(xué)報(bào);2004年04期
相關(guān)會(huì)議論文 前10條
1 袁美巧;俞瑞芳;俞言祥;;基于小波變換的地震動(dòng)時(shí)—頻特性研究[A];中國(guó)地震學(xué)會(huì)成立三十年學(xué)術(shù)研討會(huì)論文摘要集[C];2009年
2 白泉;朱浮聲;趙東陽(yáng);孫樂(lè)娟;康玉梅;;地震動(dòng)的時(shí)頻特性對(duì)結(jié)構(gòu)彈性響應(yīng)的影響[A];防振減災(zāi)工程理論與實(shí)踐新進(jìn)展(紀(jì)念汶川地震一周年)——第四屆全國(guó)防震減災(zāi)工程學(xué)術(shù)研討會(huì)會(huì)議論文集[C];2009年
3 張令心;張繼文;;近遠(yuǎn)場(chǎng)地震動(dòng)及其地震影響分析[A];第八屆全國(guó)地震工程學(xué)術(shù)會(huì)議論文集(Ⅰ)[C];2010年
4 江帆;董銀峰;李英民;郭俊鋒;;時(shí)程分析中速度脈沖地震動(dòng)的適用性及影響規(guī)律[A];第八屆全國(guó)地震工程學(xué)術(shù)會(huì)議論文集(Ⅰ)[C];2010年
5 孫進(jìn)忠;彭一民;趙鴻儒;;超聲模擬在地震動(dòng)研究中的應(yīng)用及展望[A];1991年中國(guó)地球物理學(xué)會(huì)第七屆學(xué)術(shù)年會(huì)論文集[C];1991年
6 胡聿賢;張敏政;;地震動(dòng)研究的國(guó)內(nèi)外現(xiàn)狀(綜述)[A];中國(guó)地震學(xué)會(huì)第二屆代表大會(huì)暨學(xué)術(shù)年會(huì)論文摘要匯編[C];1984年
7 袁一凡;;近場(chǎng)地震動(dòng)的模擬[A];中國(guó)地震學(xué)會(huì)第三次全國(guó)地震科學(xué)學(xué)術(shù)討論會(huì)論文摘要匯編[C];1986年
8 張?zhí)熘?馬云生;舒曦;;關(guān)于地震動(dòng)衰減關(guān)系、不確定性和設(shè)防標(biāo)準(zhǔn)的討論[A];中國(guó)地震學(xué)會(huì)第五次學(xué)術(shù)大會(huì)論文摘要集[C];1994年
9 陳培善;李保昆;白彤霞;;中國(guó)強(qiáng)地震動(dòng)速度衰減研究[A];中國(guó)地震學(xué)會(huì)第七次學(xué)術(shù)大會(huì)論文摘要集[C];1998年
10 竇玉斌;林永星;;地震動(dòng)時(shí)程模擬的工程方法研究現(xiàn)狀與預(yù)測(cè)[A];第四屆全國(guó)建筑結(jié)構(gòu)技術(shù)交流會(huì)論文集(上)[C];2013年
相關(guān)重要報(bào)紙文章 前1條
1 袁芳;北京交大發(fā)揮學(xué)科優(yōu)勢(shì)支持災(zāi)后重建[N];科技日?qǐng)?bào);2008年
相關(guān)博士學(xué)位論文 前10條
1 蔡立明;直角域中凸起和夾雜對(duì)SH波的散射和地震動(dòng)[D];哈爾濱工程大學(xué);2016年
2 趙春香;半空間界面圓形孔洞與裂紋對(duì)SH波的散射[D];哈爾濱工程大學(xué);2014年
3 常志旺;近場(chǎng)脈沖型地震動(dòng)的量化識(shí)別及特性研究[D];哈爾濱工業(yè)大學(xué);2014年
4 陳輝國(guó);完全非平穩(wěn)多點(diǎn)地震動(dòng)模擬研究[D];重慶大學(xué);2014年
5 黃景琦;巖體隧道非線性地震響應(yīng)分析[D];北京工業(yè)大學(xué);2015年
6 施煒;RC框架結(jié)構(gòu)基于一致倒塌風(fēng)險(xiǎn)的抗震設(shè)計(jì)方法研究[D];清華大學(xué);2015年
7 左占宣;鋼筋混凝土框架結(jié)構(gòu)抗地震倒塌能力研究[D];哈爾濱工業(yè)大學(xué);2016年
8 張齊;地震動(dòng)衰減關(guān)系的區(qū)域性差異研究[D];中國(guó)地震局工程力學(xué)研究所;2016年
9 王子s
本文編號(hào):2493213
本文鏈接:http://sikaile.net/shoufeilunwen/jckxbs/2493213.html