探索軟芯系統(tǒng)的相行為:二維熔化及準(zhǔn)晶的自組裝
[Abstract]:The most outstanding characteristics of the soft matter-flexibility and complexity make the soft material present especially interesting physical phenomena, in particular the self-assembly behavior of the soft material. The complexity of the soft material allows it to self-assemble into a more complex material structure under certain conditions, the flexibility of which results in the final substance form of the self-assembled structure being determined by a variety of interactions. The in-depth study of the self-assembly of soft material not only helps us to understand the phase-change behavior between different phases, but also provides a new way for designing materials with special functions. In many research directions, the formation of two-dimensional melting and soft quasicrystal has been a popular content of soft condensed matter physics. In this paper, we mainly study the properties of the two-dimensional solid-liquid phase transition and the self-assembly behavior of the quasicrystal. In the introduction of the first chapter, we first introduce the important characteristics of soft matter and its main research direction. Then we focus on the self-assembly and self-assembly of the soft material from the two aspects of the self-assembly classification and the self-assembly form of the soft material. In many self-assembly research directions, we focus on the self-assembly of two-dimensional melting and quasicrystal. The KTHY theory is an important theoretical basis for the current understanding and analysis of two-dimensional melting. Based on the assumption and conclusion of the two-dimensional solid and the KTHY theory, and some research results, the important contents of the two-dimensional melting are introduced in detail, and the two-dimensional melting phase-change properties and the different material states are listed from the two aspects of the structural and dynamic characteristics of the two-dimensional melting. In the end, with the development of the quasicrystal, the high-dimensional space model, the important physical characteristics and the two important quasi-crystal structures of the quasi-crystal are introduced. It is an important way to study and solve a series of problems in the quasi-crystal by linking the quasi-crystal and the soft material to the soft quasicrystal. The component particles of different physical properties have a great effect on the macroscopic properties of the soft material. In the second chapter, we first introduce two commonly used soft-particle models, hard-core soft-shell model and super-soft model, and its typical phase behavior. Then, we analyze the typical hypersoft system and its phase behavior. In the third chapter, we study the two-dimensional melting of three different soft-core systems capable of re-melting. In the phase diagram of this kind of soft-core system, there is a maximum melting temperature, Tm, and the corresponding density is 1. m. By analyzing the isothermal state equation and its finite-scale effect, and using the directional correlation function and the position correlation function to determine the state of each object, we find that on the ppm side, The transition of the hexagonal phase-liquid is non-continuous, there is phase separation, and the density of the coexistence zone decreases with increasing temperature and tends to disappear at the maximum melting temperature Tm. The phase-change properties between the hexagonal phase and the liquid are continuous on one side of the ppm. Further, by analyzing the maximum direction correlation length of the liquid, we determine that the maximum melting temperature Tm is a watershed of two phase change property types. More directly, we clearly see the coexistence phase and the pure hexagonal phase by an intuitive instantaneous bit pattern. These results show that the soft-core system with the maximum melting temperature can exhibit both a discontinuous hexagonal phase-liquid transition and a continuous hexagonal phase-liquid transition. In the conventional quasi-crystal formation method, a variety of competing length scales are considered indispensable, whether directly provided by the interaction potential or hidden in the particle size or shape. In the fourth chapter, we follow a purely repulsive and isotropic soft-core model in the third chapter, and the existence of the eight-axis and the twelve-axis symmetric quasicrystal is found. By analyzing the position-type structure of the quasicrystal, we find that the pentagonal shape is the basic element for forming the quasi-crystal order. The importance of the pentagons is further confirmed by analyzing the dynamics of the quasicrystal and the structure of the liquid before the formation of the solid. We then determine that our quasicrystal is stable by studying the dependence of the quasi-crystal on the path, and the comparison of the potential energy of the different solid structures. In the end, we simply analyze the phase-change properties of the quasicrystal and its vibration characteristics. Our results provide an inconceivable simple path for the formation of the quasicrystal, and the theoretical understanding of the alignment crystal presents a challenge. In the fifth chapter, we sum up the thesis and look forward to the future work.
【學(xué)位授予單位】:中國(guó)科學(xué)技術(shù)大學(xué)
【學(xué)位級(jí)別】:博士
【學(xué)位授予年份】:2017
【分類(lèi)號(hào)】:O469
【相似文獻(xiàn)】
相關(guān)期刊論文 前10條
1 孟慶斌;劉克良;;肽類(lèi)自組裝研究進(jìn)展[J];化學(xué)進(jìn)展;2009年11期
2 杜世萱;季威;高鴻鈞;;功能納米結(jié)構(gòu)可控生長(zhǎng)的新途徑:非模板選擇性自組裝[J];物理;2007年06期
3 周慶翰;林娟;羅建斌;;一種納米多肽材料的自組裝結(jié)構(gòu)與機(jī)制研究[J];西南民族大學(xué)學(xué)報(bào)(自然科學(xué)版);2011年03期
4 蔡田田;孫凱;謝佳樂(lè);唐濤良;王俊忠;;量子尺寸效應(yīng)誘導(dǎo)的選擇性分子吸附和自組裝結(jié)構(gòu)[J];西南師范大學(xué)學(xué)報(bào)(自然科學(xué)版);2012年09期
5 王彬,蔡繼業(yè),孫彩軍,馮倩,曾谷城,梁志紅,潘善培;用AFM對(duì)質(zhì)粒DNA在云母表面的自組裝研究[J];暨南大學(xué)學(xué)報(bào)(自然科學(xué)與醫(yī)學(xué)版);2004年03期
6 何曉青,蔡繼業(yè),趙濤,王小燕,梁志紅;Ⅰ型膠原蛋白在云母表面自組裝的AFM研究[J];生物技術(shù);2004年02期
7 徐善東,雷圣賓,曾慶禱,王琛,萬(wàn)立駿,白春禮;4,5-二-十二巰基鄰苯二腈在石墨表面的二維自組裝結(jié)構(gòu)[J];科學(xué)通報(bào);2003年05期
8 張成;楊靜;許進(jìn);;自組裝DNA/納米顆粒分子邏輯計(jì)算模型[J];科學(xué)通報(bào);2011年27期
9 路繼群;閆存極;嚴(yán)會(huì)娟;萬(wàn)立駿;;1,3,2-Dioxaborine衍生物在石墨表面的二維自組裝結(jié)構(gòu)[J];科學(xué)通報(bào);2007年10期
10 周群,李曉偉,周耀國(guó),趙宏,季媛,鄭軍偉;二維自組裝結(jié)構(gòu)中銀納米粒子的吸收光譜特征[J];光散射學(xué)報(bào);2004年04期
相關(guān)會(huì)議論文 前10條
1 閆學(xué)海;朱朋莉;李峻柏;;二肽自組裝[A];第一屆全國(guó)生物物理化學(xué)會(huì)議暨生物物理化學(xué)發(fā)展戰(zhàn)略研討會(huì)論文摘要集[C];2010年
2 張關(guān)心;張德清;朱道本;;四硫富瓦烯共軛分子的設(shè)計(jì)合成與自組裝研究[A];全國(guó)第八屆有機(jī)固體電子過(guò)程暨華人有機(jī)光電功能材料學(xué)術(shù)討論會(huì)摘要集[C];2010年
3 李燕;徐蕊;何學(xué)浩;;二元粒子自組裝的動(dòng)力學(xué)研究[A];2013年全國(guó)高分子學(xué)術(shù)論文報(bào)告會(huì)論文摘要集——主題B:高分子理論、計(jì)算與模擬[C];2013年
4 周亭;楊延蓮;王琛;徐桂英;;兩親性多肽的自組裝結(jié)構(gòu)及其與DNA的相互作用[A];中國(guó)化學(xué)會(huì)第十四屆膠體與界面化學(xué)會(huì)議論文摘要集-第1分會(huì):表面界面與納米結(jié)構(gòu)材料[C];2013年
5 周鵬;徐海;呂建仁;;離子互補(bǔ)肽自組裝結(jié)構(gòu)研究——實(shí)驗(yàn)和模擬[A];中國(guó)化學(xué)會(huì)第十三屆膠體與界面化學(xué)會(huì)議論文摘要集[C];2011年
6 楊秋艷;陳加福;許群;;球形自組裝結(jié)構(gòu)的制備及其在超臨界CO_2下的穩(wěn)定化研究[A];2011年全國(guó)高分子學(xué)術(shù)論文報(bào)告會(huì)論文摘要集[C];2011年
7 程禮盛;曹達(dá)鵬;;剛?cè)醿汕抖喂簿畚镌诩{米狹縫孔中的自組裝研究[A];中國(guó)化學(xué)會(huì)第26屆學(xué)術(shù)年會(huì)超分子組裝與軟物質(zhì)材料分會(huì)場(chǎng)論文集[C];2008年
8 劉鳴華;;小分子凝膠的自組裝結(jié)構(gòu)調(diào)控、超分子手性與功能化[A];中國(guó)化學(xué)會(huì)第十四屆膠體與界面化學(xué)會(huì)議論文摘要集-大會(huì)報(bào)告[C];2013年
9 延輝;苑世領(lǐng);劉成卜;;陰離子表面活性劑自組裝結(jié)構(gòu)的分子動(dòng)力學(xué)模擬[A];第十屆全國(guó)計(jì)算(機(jī))化學(xué)學(xué)術(shù)會(huì)議論文摘要集[C];2009年
10 廖烈強(qiáng);謝星星;嚴(yán)章強(qiáng);劉啟昊;嚴(yán)慧玲;柳輝金;羅序中;;超分子有機(jī)凝膠中自組裝結(jié)構(gòu)的調(diào)控[A];中國(guó)化學(xué)會(huì)第29屆學(xué)術(shù)年會(huì)摘要集——第18分會(huì):超分子組裝與軟物質(zhì)材料[C];2014年
相關(guān)重要報(bào)紙文章 前3條
1 馮衛(wèi)東;“積木”搭出活器官[N];科技日?qǐng)?bào);2008年
2 劉霞;納米殼自組裝結(jié)構(gòu)呈獨(dú)特光學(xué)性能[N];科技日?qǐng)?bào);2010年
3 常麗君;DNA—納米粒子自組裝膠體可帶來(lái)智能材料[N];科技日?qǐng)?bào);2013年
相關(guān)博士學(xué)位論文 前10條
1 崔麗華;分子間弱鍵誘導(dǎo)二維自組裝納米結(jié)構(gòu)的形成與調(diào)控機(jī)制研究[D];華南理工大學(xué);2015年
2 張冬;熵焓共同作用下納米粒子/高分子復(fù)合體系的自組裝[D];浙江大學(xué);2015年
3 林宗瓊;對(duì)稱(chēng)性破缺驅(qū)動(dòng)下螺環(huán)芳烴納米晶半導(dǎo)體的多尺度自組裝與光電性質(zhì)[D];南京郵電大學(xué);2015年
4 汪羽翎;樹(shù)形多臂共聚物溶液自組裝的耗散粒子動(dòng)力學(xué)研究[D];上海交通大學(xué);2015年
5 查寶;弱鍵調(diào)控噻吩并菲衍生物在固液界面的二維自組裝納米結(jié)構(gòu)及其形成機(jī)理[D];華南理工大學(xué);2016年
6 祖夢(mèng)婕;探索軟芯系統(tǒng)的相行為:二維熔化及準(zhǔn)晶的自組裝[D];中國(guó)科學(xué)技術(shù)大學(xué);2017年
7 王凈;兩親性多肽的合成、自組裝和界面吸附研究[D];中國(guó)石油大學(xué);2010年
8 侯嘉驊;模板輔助多肽自組裝的研究[D];內(nèi)蒙古農(nóng)業(yè)大學(xué);2015年
9 韓亮;熒蒽衍生物的合成、發(fā)光及自組裝性質(zhì)的研究[D];吉林大學(xué);2015年
10 王曉光;鳥(niǎo)嘌呤核苷衍生物的自組裝[D];吉林大學(xué);2010年
相關(guān)碩士學(xué)位論文 前10條
1 樊樹(shù)峰;具有不同剛棒構(gòu)筑單元的剛棒—線(xiàn)團(tuán)分子的合成及自組裝性質(zhì)的研究[D];延邊大學(xué);2015年
2 溫智廷;熱響應(yīng)型剛棒—線(xiàn)團(tuán)分子的合成及其自組裝性質(zhì)的研究[D];延邊大學(xué);2015年
3 張婷婷;酞菁錳自組裝薄膜生長(zhǎng)機(jī)制研究[D];西南大學(xué);2015年
4 趙靜;電場(chǎng)控制下的膠體自組裝[D];蘇州大學(xué);2015年
5 郭凱;分子動(dòng)力學(xué)模擬二肽自組裝和驅(qū)油過(guò)程[D];山東大學(xué);2015年
6 申學(xué)禮;烷氧基苯分子表面自組裝的STM研究[D];蘇州大學(xué);2015年
7 譚朋利;應(yīng)用分子力學(xué)/動(dòng)力學(xué)研究有機(jī)分子/蛋白分子的反應(yīng)機(jī)理[D];蘇州大學(xué);2015年
8 凌杰;金屬配位鍵調(diào)控的4’-(4-羧基苯基)-2,2’:6’,2”-三聯(lián)吡啶分子自組裝結(jié)構(gòu)研究[D];南昌大學(xué);2015年
9 郭燕;生物大分子自組裝結(jié)構(gòu)的原子力顯微鏡研究[D];江西師范大學(xué);2015年
10 楊陽(yáng);離子液體催化Biginelli反應(yīng)和表面活性劑/β-CD自組裝的調(diào)控[D];新疆大學(xué);2015年
,本文編號(hào):2488563
本文鏈接:http://sikaile.net/shoufeilunwen/jckxbs/2488563.html