新型人工材料中量子系統(tǒng)的動力學(xué)演化及非經(jīng)典性質(zhì)
[Abstract]:The excitation atoms in the vacuum, due to the influence of the uniform fluctuation electromagnetic mode, will spontaneously radiate the photons and transition from the excited state to the ground state. After recognizing the self-emitting process of the material capable of modifying the atoms, the effect of a variety of new materials on the vacuum environment has been initiated. With the development of experimental production technology, new types of artificial materials, such as metal materials, topological insulators, and graphenene, were prepared before and after 2004. In which the specific material is designed and prepared on a cognitive framework based on natural materials, and has unique optical properties such as negative refractive index and electromagnetic transparency. In the topological insulator, when the time inversion symmetry of the inept surface state is destroyed, the optical property of the topological insulator is affected by the modification of the topological quantity, and special electromagnetic phenomena such as the Faraday rotation effect can be displayed. In the graphene thin layer, the optical properties in different frequency bands can be controlled by adjusting the concentration and the type of the gate voltage or the chemical doping. In the terahertz frequency band, the graphene will exhibit the nature of the metalloid and support the propagation of the surface plasma mode. In this paper, the properties of atom self-emission in different materials are studied in this paper, and the entanglement, quantum interference and resonance fluorescence spectrum compression of atoms in different materials are studied in this paper. First, we have studied the entanglement of two two-level system in the zero-refractive material. Wherein the zero-refraction material consists of two different types of single-negative material plates with the same thickness. In order to be able to excite the surface field at the junction of the two plate materials and to generate a strong coupling, we place the atomic pairs near the interface. It is assumed that the system is in a single excited state. According to the Schrodinger equation, the probability amplitude evolution equation of the system is obtained without the Markov approximation. When the thickness of the material is much larger than the characteristic length of the surface field, the green function can be simplified and has an analytical expression. By solving the motion equation of the system, it is known that there is a critical value, and when the interaction intensity of the symmetric mode, the antisymmetric mode and the surface field is at both ends, the system will exhibit different dynamic properties. In particular, the evolution of the system will show the Markov behavior and the non-Markov behavior under strong interaction, respectively. The entanglement of the system is affected by the initial state, which will show the gradual attenuation from the entangled state until it disappears or gradually increases with time, and keeps the characteristics for a long time. In addition, when the transition frequency of the atom and the resonance frequency of the surface field are detuned, entanglement can still be generated if the inter-correlation of the atoms is strong. Secondly, we study the quantum interference effect of three-level Zeeman atom in the optical microcavity composed of topological insulator. Due to the existence of the topological electromagnetic effect, when the length of the micro-cavity is less than half a vacuum wavelength, the dipole transition of the atoms parallel to the cavity mirror is suppressed, and the dipole transition in the vertical direction is strengthened. And when the topological electromagnetic effect is very strong, the dipole radiation parallel to the cavity mirror disappears completely, and the atoms in the cavity can generate extremely strong quantum interference effect. If the length of the micro-cavity is increased, due to the non-uniform distribution of the electromagnetic field in the cavity, the intensity of the quantum interference at this time is dependent on the position of the atom in the cavity, and the wave characteristic after the superposition of the coherent electromagnetic wave is presented. In practice, a certain amount of energy loss will be present in the material. The results show that this loss has a great effect on the spontaneous emission of atoms in a small area near the cavity mirror. Thus, when the atom is in the region, the contribution of other electromagnetic modes to the spontaneous emission is less than the effect of the dissipation on the atoms, and the quantum interference effect will be destroyed and greatly reduced. After the atom is far from the cavity mirror, the effect of loss on the quantum interference will gradually disappear, and the corresponding condition is basically the same as that of no loss. Finally, we discuss the radiation properties of two-level quantum dots near the surface of the graphene. In the terahertz frequency band, the Purcell coefficient of the quantum dot shows an approximate lorentz-type distribution along with the frequency change. And, with the increase of the ambient temperature, the distribution will tend to average while the Purcell coefficient decreases at zero temperature. The quantum dots are placed in the working area of the surface plasma field, and by adjusting the intensity and the center frequency of the pumping laser field, when the two transition channels corresponding to the modified quantum dots decay at different rates, the resonance fluorescence spectrum will exhibit a compression phenomenon. And the distance between the quantum point and the graphene is appropriately reduced, so that the coupling strength of the quantum dot and the surface field is increased, and the damage to the compression can be overcome by overcoming the quantum dot rejection coherence effect. When the distribution of the modified quantum dots is great, the experimental parameters can be reasonably selected, and the compression strength at room temperature will be more than zero temperature. In addition, even at room temperature, by adjusting the Fermi energy of the graphene and the intensity and the center frequency of the pump light field, the compression phenomenon in the quantum dot fluorescence spectrum can be greatly enhanced.
【學(xué)位授予單位】:華中師范大學(xué)
【學(xué)位級別】:博士
【學(xué)位授予年份】:2016
【分類號】:O413
【相似文獻(xiàn)】
相關(guān)期刊論文 前10條
1 王治國;高童童;譚為;;微帶線系統(tǒng)中基于相位耦合機制的類量子干涉行為[J];南昌航空大學(xué)學(xué)報(自然科學(xué)版);2012年01期
2 孫萌濤,田紅梅,沙國河;轉(zhuǎn)動傳能中的量子干涉:干涉角和相對速度的關(guān)系(英文)[J];化學(xué)物理學(xué)報;2002年03期
3 孫真榮,王祖賡;分子及分子-原子混合系統(tǒng)中的量子干涉效應(yīng)[J];量子電子學(xué)報;2004年02期
4 關(guān)洪;量子干涉效應(yīng)[J];物理;1983年04期
5 吳錦捫,趙泓;意識與量子干涉——一個實驗性的探討[J];自然雜志;1983年02期
6 高韶燕,李福利;量子干涉效應(yīng)對原子共振熒光非經(jīng)典特性的影響[J];原子核物理評論;2002年02期
7 王立,張小安,牛超英;四能級混合共振系統(tǒng)量子干涉現(xiàn)象理論分析[J];雁北師范學(xué)院學(xué)報;2003年02期
8 楊希華,孫真榮,丁良恩,王祖賡;基于碰撞產(chǎn)生的頻域和時域內(nèi)的量子干涉效應(yīng)研究[J];量子光學(xué)學(xué)報;2004年S1期
9 李永慶,陳躍輝,李春霞,馬鳳才;轉(zhuǎn)動傳能中的量子干涉——干涉角和轉(zhuǎn)動量子數(shù)的關(guān)系[J];原子與分子物理學(xué)報;2005年04期
10 韓紅培;王國志;;低頻調(diào)制場中鉀原子的量子干涉效應(yīng)[J];河南師范大學(xué)學(xué)報(自然科學(xué)版);2007年02期
相關(guān)會議論文 前10條
1 楊希華;孫真榮;丁良恩;王祖賡;;基于碰撞產(chǎn)生的頻域和時域內(nèi)的量子干涉效應(yīng)研究[A];第十一屆全國量子光學(xué)學(xué)術(shù)會議論文摘要集[C];2004年
2 羊亞平;許靜平;陳鴻;朱詩堯;;左手性材料對量子干涉的影響[A];第十三屆全國量子光學(xué)學(xué)術(shù)報告會論文摘要集[C];2008年
3 李永放;鈕月萍;;量子干涉效應(yīng)與四波混頻相互作用的研究[A];第六屆全國光學(xué)前沿問題研討會論文摘要集[C];2003年
4 鄭仕標(biāo);;一種制備囚禁離子運動的宏觀量子干涉態(tài)的方法[A];面向21世紀(jì)的科技進(jìn)步與社會經(jīng)濟發(fā)展(上冊)[C];1999年
5 周魯;譚榮;李高翔;;兩平行板間的三能級原子衰變通道之間的量子干涉[A];大珩先生九十華誕文集暨中國光學(xué)學(xué)會2004年學(xué)術(shù)大會論文集[C];2004年
6 曾小東;許靜平;羊亞平;;磁單負(fù)材料板附近原子量子干涉的加強[A];第十五屆全國量子光學(xué)學(xué)術(shù)報告會報告摘要集[C];2012年
7 楊希華;孫真榮;曾和平;丁良恩;王祖賡;;原子—分子體系中多能級系統(tǒng)的量子干涉效應(yīng)[A];第九屆全國量子光學(xué)學(xué)術(shù)報告會摘要集(Ⅱ)[C];2000年
8 吳美娟;吳令安;;參量下轉(zhuǎn)換光子與次生和頻光子之間的四階量子干涉實驗方案[A];第七屆全國量子光學(xué)學(xué)術(shù)報告會論文摘要集[C];1996年
9 苗剛;馬鳳才;;原子-雙原子分子體系碰撞誘導(dǎo)中的量子干涉效應(yīng)[A];第十五屆全國原子與分子物理學(xué)術(shù)會議論文摘要集[C];2009年
10 許靜平;王立剛;羊亞平;林強;朱詩堯;;利用一維光子晶體使V型Zeeman原子發(fā)生完全量子干涉[A];第十三屆全國量子光學(xué)學(xué)術(shù)報告會論文摘要集[C];2008年
相關(guān)重要報紙文章 前1條
1 本報記者 張夢然;“量子力學(xué)在哪?你正沉浸其中”[N];科技日報;2012年
相關(guān)博士學(xué)位論文 前8條
1 方煒;新型人工材料中量子系統(tǒng)的動力學(xué)演化及非經(jīng)典性質(zhì)[D];華中師范大學(xué);2016年
2 孫萌濤;碰撞誘導(dǎo)轉(zhuǎn)動傳能中的量子干涉效應(yīng)理論研究[D];中國科學(xué)院研究生院(大連化學(xué)物理研究所);2003年
3 鄭軍;電磁感應(yīng)介質(zhì)的量子干涉效應(yīng)研究[D];南昌大學(xué);2009年
4 馬瑞瓊;量子干涉效應(yīng)與量子態(tài)測量的理論研究[D];陜西師范大學(xué);2009年
5 鄧樂;分子多能級系統(tǒng)量子干涉效應(yīng)研究[D];華東師范大學(xué);2000年
6 張衍亮;原子、分子和離子多能級系統(tǒng)中的量子干涉及光輻射研究[D];華東師范大學(xué);2002年
7 趙順才;基于量子干涉效應(yīng)的低吸收負(fù)折射率介質(zhì)及相關(guān)研究[D];南昌大學(xué);2011年
8 劉杰;乙烯酮的光解動力學(xué)研究和CO-HCI碰撞傳能中的量子干涉效應(yīng)實驗研究[D];中國科學(xué)院研究生院(大連化學(xué)物理研究所);2005年
相關(guān)碩士學(xué)位論文 前10條
1 張雙穎;基于量子干涉的二維負(fù)折射效應(yīng)研究[D];昆明理工大學(xué);2015年
2 張小安;四能級系統(tǒng)中的量子干涉[D];陜西師范大學(xué);2000年
3 曾福華;多能級系統(tǒng)中基于量子干涉效應(yīng)下的量子調(diào)控[D];南昌大學(xué);2007年
4 陳峻;多能級系統(tǒng)中的量子干涉效應(yīng)[D];南昌大學(xué);2007年
5 張振清;多能級原子系統(tǒng)中量子干涉效應(yīng)的研究[D];南昌大學(xué);2011年
6 曹謹(jǐn)豐;中間態(tài)引入量子干涉的多光子共振多波混頻[D];河北大學(xué);2009年
7 趙艷輝;光場中原子的宏觀量子干涉[D];東北師范大學(xué);2009年
8 賈久峰;四能級系統(tǒng)中量子干涉效應(yīng)的研究[D];大連理工大學(xué);2010年
9 蔡立鋒;量子干涉在光與原子相互作用中的理論及應(yīng)用[D];國防科學(xué)技術(shù)大學(xué);2005年
10 方慧娟;多能級原子系統(tǒng)中的量子調(diào)控[D];南昌大學(xué);2008年
,本文編號:2487273
本文鏈接:http://sikaile.net/shoufeilunwen/jckxbs/2487273.html