強(qiáng)自旋軌道耦合體系的第一性原理研究
[Abstract]:The spin-orbit coupling interaction is a relativistic effect that is exhibited by the electrons. In 2005, Kane et al. found that the spin-orbit coupling interaction can lead to the phase transition of the topological insulator, and the spin-orbit coupling interaction is more and more important in the condensed state. The size of the spin-orbit coupling interaction is proportional to the number of atomic nuclei, so the larger the atomic number, the greater the interaction of the spin-orbit coupling. As a result, for the compounds of the sixth cycle and the elements of the fifth cycle, we need to consider the spin-orbit coupling interaction. The 5d transition metal oxide is extended in real-space distribution compared to the 3d and 4d systems, so the electron association U is relatively 3d, The 4d transition element is relatively small. It is contemplated that the system will be changed from the insulator to the metal from 3d to 5d. However, many 5d system exhibit insulator behavior since that 5-d transition group element tend to have strong spin-orbit coupling interaction. The 5-d transition metal oxide contains rich physics under the condition of the interaction of the spin-orbit coupling and the electron correlation and the interaction of the lattice. Such as mott insulators, complex magnetic, topological insulators, weyl semi-metals, and the like. For heavy elements Bi, Pb, Te, Sb, Sn, and the like, their spin-orbit coupling interaction is also strong, so many topological insulators contain these heavy elements, such as HgTe/ CdTe quantum wells, Bi2Se3, and the like. In addition to the topological insulator, a topology-protected semi-metal is also found. The topology semi-metal is now divided into three groups: Dirac semi-metal, Weyl half-metal, and node-line semi-metal. The Dirac point and the Weyl point in the Dirac semi-metal and the Weyl semi-metal are distributed discretely in the momentum space and the number is limited. Their surface states are characterized by a fermi arc. The Dirac semimetal is transformed into Weyl semimetal at break time inversion or space inversion symmetry. While the energy bands of the node-line semi-metal intersect in the vicinity of the fermi surface and the intersection point has a plurality of intersection points which are connected in a line in the reverse space. For the ideal node-line half-metal, all the intersections are on the same energy plane, then its surface state is a flat band. This provides a platform for the study of superconducting and fractional quantum Hall effects. It is of great significance to find the material of the strong spin-orbit-coupled interaction system and to study the rich physical properties of these materials. Based on the density functional theory, the tight-binding model and the k-p perturbation theory, we study the material of several kinds of strong spin-orbit coupling: we first study the 5-d transition metal compound, NaOO3, and find that it is a new three-dimensional Slater insulator. We have systematically calculated the electronic structure of NaOO3 and searched its magnetic structure and found that its magnetic ground state is G-type anti-ferromagnetic. The spin-orbit coupling interaction does not allow the system to open the energy gap, and the same electron correlation does not allow the system to open the energy gap. When the system is in the G-type antiferromagnetic state, an energy gap is opened, which proves that NaOO3 is a three-dimensional Slater insulator. The magnetic structure of our theory is then confirmed by the experiment. Secondly, we have predicted a new three-dimensional Dirac semimetal BaYBi (Y = Cu, Ag, Au). This kind of Dirac semi-metallic material is stable, the composition is not highly toxic, and it brings great convenience for experimental research and industrial application. The electron structure of BaCuBi and BaAgBi is similar to that of BaAgBi: the 6p band of Bi forms a reverse band structure through the Ag-5s (Cu-4s) band at the r point under the combination of the spin-orbit coupling interaction and the crystal field, and the intersection point (Dirac point) is formed along the F-A. While the anti-tape structure of the baaubi occurs between the 6p bands of bi. We have also discussed doping so that this three-dimensional Dirac semimetal becomes a Weyl semi-metal. Then we discussed the electronic structure and surface state of Weyl semi-metal NbP. NbP is a member of the recently discovered non-center-inverted Weyl semi-metallic TaAs family. When the NbP is coupled without a spin-free track, the energy band forms a node-line under mirror symmetry protection. When the spin-orbit coupling interaction is taken into account, each node-line evolves into an opposing Weyl point. Their surface state has a particular tadpole shape. Our theoretical calculation results are in good agreement with the results of the ARPES experiment. By selecting a closed curve and looking at the number of times this closed curve crosses the Fermi surface, we finally determine that NbP is a Weyl half-metal. In the end, we find that the binary compound CaTe of the CsCl structure is a node-line semi-metal when the spin-orbit coupling interaction is neglected. It has three mutually perpendicular node-lines, and the three nodes-line are all near the M-point. We studied the surface state of the node-line semi-metal, and found that its surface state is the same two-dimensional flat belt as the drum surface. This provides a platform for the study of superconducting and fractional quantum Hall effects. When the spin-orbit coupling interaction is applied, this topology node-line half-metal becomes a Dirac semi-metal. The three node-line of it will open the energy gap, leaving the intersection only on the M-R line. This intersection is stabilized by the symmetry of the C4 rotation symmetry on the M-R line. If the C4 rotational symmetry is broken, such as the addition of stress, then this three-dimensional Dirac semi-metal will evolve into a strong topological insulator.
【學(xué)位授予單位】:南京大學(xué)
【學(xué)位級別】:博士
【學(xué)位授予年份】:2016
【分類號】:O469
【相似文獻(xiàn)】
相關(guān)期刊論文 前10條
1 楊軍;戴斌飛;李霞;;自旋軌道耦合效應(yīng)及其應(yīng)用研究[J];大學(xué)物理;2011年08期
2 郝正同;;基于自旋軌道耦合效應(yīng)的能帶分裂機(jī)理[J];綿陽師范學(xué)院學(xué)報(bào);2012年05期
3 張磊;李輝武;胡梁賓;;二維自旋軌道耦合電子氣中持續(xù)自旋螺旋態(tài)的穩(wěn)定性的研究[J];物理學(xué)報(bào);2012年17期
4 儲(chǔ)連元;原子核內(nèi)的自旋軌道耦合[J];物理學(xué)報(bào);1958年06期
5 劉漢昭;包括自旋軌道耦合能和作為動(dòng)量函數(shù)的位能在內(nèi)的湯、費(fèi)模型及其在原子核中的應(yīng)用[J];物理學(xué)報(bào);1960年06期
6 王元;莊勤;;1f_(7/2)殼層不同種核子組態(tài)核能譜與兩體自旋軌道耦合作用[J];高能物理與核物理;1985年05期
7 陳小暑;張慶營;;兩體自旋軌道耦合力與f_(7/2)殼層能譜[J];高能物理與核物理;1979年04期
8 馮俊生;;自旋軌道耦合作用下的電子雙折射研究[J];安徽教育學(xué)院學(xué)報(bào);2007年03期
9 孫慶豐;謝心澄;王健;;存在自旋軌道耦合的介觀小環(huán)中的持續(xù)自旋流[J];物理;2007年11期
10 楊杰;董全力;江兆潭;張杰;;自旋軌道耦合作用對碳納米管電子能帶結(jié)構(gòu)的影響[J];物理學(xué)報(bào);2011年07期
相關(guān)會(huì)議論文 前5條
1 孫慶豐;謝心澄;郭鴻;王健;;自旋軌道耦合和自旋流[A];量子電荷和自旋輸運(yùn)研討會(huì)論文集[C];2005年
2 張慶營;;非中心力矩陣元的公式(續(xù))[A];第五次核物理會(huì)議資料匯編(中冊)[C];1982年
3 劉計(jì)紅;李玉現(xiàn);;自旋軌道耦合對正常金屬/半導(dǎo)體/超導(dǎo)體隧道結(jié)中的散粒噪聲的影響[A];第十六屆全國半導(dǎo)體物理學(xué)術(shù)會(huì)議論文摘要集[C];2007年
4 董衍坤;張紅梅;李玉現(xiàn);;自旋軌道耦合對Aharonov-Bohm測量儀中自旋相關(guān)輸運(yùn)的影響[A];第十六屆全國半導(dǎo)體物理學(xué)術(shù)會(huì)議論文摘要集[C];2007年
5 和音;騰禮堅(jiān);巫光漢;王凡;;夸克互作用勢的唯象研究 Ⅱ.自旋軌道耦合力的影響[A];第五次核物理會(huì)議資料匯編(下冊)[C];1982年
相關(guān)博士學(xué)位論文 前10條
1 付正坤;量子簡并費(fèi)米氣體中的自旋軌道耦合[D];山西大學(xué);2014年
2 梁海星;基于SrTiO_3氧化物界面的光伏與自旋軌道耦合效應(yīng)[D];中國科學(xué)技術(shù)大學(xué);2015年
3 杜永平;強(qiáng)自旋軌道耦合體系的第一性原理研究[D];南京大學(xué);2016年
4 崔靖鑫;自旋軌道耦合冷原子費(fèi)米氣體中的量子效應(yīng)及其應(yīng)用[D];清華大學(xué);2013年
5 段皓;具有各向同性自旋軌道耦合的兩體散射研究[D];清華大學(xué);2013年
6 琚偉偉;過渡金屬團(tuán)簇及氧化物自旋軌道耦合效應(yīng)及電子態(tài)的理論研究[D];復(fù)旦大學(xué);2012年
7 張進(jìn)一;量子氣體在自旋軌道耦合下的實(shí)驗(yàn)研究[D];中國科學(xué)技術(shù)大學(xué);2013年
8 王春明;二維自旋軌道耦合系統(tǒng)中自旋霍爾效應(yīng)以及相關(guān)輸運(yùn)性質(zhì)的研究[D];上海交通大學(xué);2008年
9 李源;具有自旋軌道耦合的二維電子系統(tǒng)自旋動(dòng)力學(xué)的研究[D];浙江大學(xué);2008年
10 任莉;自旋軌道耦合的二維電子氣中自旋輸運(yùn)相關(guān)性質(zhì)的研究[D];復(fù)旦大學(xué);2008年
相關(guān)碩士學(xué)位論文 前10條
1 要曉騰;自旋軌道耦合效應(yīng)下量子環(huán)鏈的自旋輸運(yùn)性質(zhì)[D];河北師范大學(xué);2015年
2 王俊;具有自旋軌道耦合的一維冷原子費(fèi)米氣中的量子相以及無序效應(yīng)研究[D];浙江師范大學(xué);2015年
3 張旭華;一維光晶格中費(fèi)米氣體的量子相變[D];山西大學(xué);2015年
4 趙龍;低維自旋軌道耦合費(fèi)米氣體的BCS-BEC渡越[D];山西大學(xué);2015年
5 韓虹;基于DMRG算法的自旋軌道耦合費(fèi)米氣體的相變研究[D];山西大學(xué);2014年
6 周曉凡;一維光學(xué)晶格中的自旋—軌道耦合費(fèi)米氣體[D];山西大學(xué);2014年
7 厲建崢;強(qiáng)自旋軌道耦合化合物Sr_2IrO_4的制備與摻雜研究[D];南京郵電大學(xué);2015年
8 王敏;自旋軌道耦合串聯(lián)雙量子點(diǎn)體系的全計(jì)數(shù)統(tǒng)計(jì)[D];太原理工大學(xué);2016年
9 呂純海;一維量子費(fèi)米氣體中的自旋軌道耦合效應(yīng)[D];蘭州大學(xué);2013年
10 胡麗云;半導(dǎo)體自旋軌道耦合作用下電子自旋輸運(yùn)性質(zhì)的研究[D];湖北大學(xué);2012年
,本文編號:2442299
本文鏈接:http://sikaile.net/shoufeilunwen/jckxbs/2442299.html