自適應(yīng)光學(xué)測(cè)試與系統(tǒng)優(yōu)化研究
[Abstract]:Adaptive Optics (AO) is a technique for real-time detection and compensation of pre-wave distortion. It is widely used in the fields of astronomical imaging, laser beam control, free space laser communication, retinal imaging, microimaging, and space optics. Although the adaptive optics have made great success in many fields, the adaptive optics still have a further improvement in the control method, the non-co-optical path aberration correction, and the like. The research of self-adaptive optics test and system optimization is of great significance for measuring, analyzing and improving the performance of the adaptive optical system. The self-adaptive optical test and system optimization cover a lot of content. In this paper, the method of pre-processor test method, self-adaptive optical system performance test method, and the method of correcting non-co-optical path aberration using the pre-wave processor are selected based on the actual demand in the engineering application. The following research work is carried out: 1. The composition of the adaptive optics and the adaptive optics system is introduced, and the self-adaptive optics reconstruction algorithm is summarized and analyzed. A fast algorithm of Zernike polynomial based on discrete Fourier transform is derived and a fast algorithm of Zernike polynomial based on discrete Fourier transform is derived and a fast algorithm of Zernike polynomial based on discrete Fourier transform is derived. In order to solve the problem of difficult debugging, a scheme is designed and implemented to realize the pre-wave processor test by using the upper computer software. The method can test the middle calculation result of the wave front processor in step, and can avoid the damage to the precision wave front corrector due to improper output in the hardware debugging. First, the function, composition and workflow of the pre-wave processor are analyzed, and the test procedure of the pre-wave processor is determined. then, the working mode of the pre-wave processor is tested by judging the uploading data of the pre-wave processor, the system parameter is set correctly, the pre-wave slope calculation process of the pre-wave processor is tested by comparing the software calculation value and the pre-wave processor upload value, The pre-wave reconstruction process and the pre-wave control process. Finally, the test method is applied to the test of the 97-unit adaptive optical pre-processor, and the result shows that the hardware debugging efficiency of the pre-wave processor is greatly improved. after the pre-tested wave front processor can work normally in the self-adaptive optical experimental system, the rms and pv of the residual wave front aberration of the system after continuous correction are respectively 0.034 wavelength and 0.392 wavelength. A non-co-optical path aberration correction method suitable for a pre-wave processor is proposed. First, the cause of the non-co-optical path aberration and the method of using the phase difference technique to detect the aberration of the non-co-optical path are discussed. Then, according to the working flow of the wave front processor, the algorithm of converting the non-co-optical path image difference to the reference point offset of the shack-hartmann wave front detector (sh-wfs) is derived, and a main control computer software module for implementing the algorithm is developed. in that end, the experiment is carried out using the light source in the optical path of the telescope, and after the aberration correction of the non-co-optical path is carried out by adopting the method, the target energy concentration degree is increased by 1.7%, the feasibility of the method is proved, and 4, in order to meet the requirement of the performance test of the adaptive optical system, In this paper, the image of the corrected white-light-fiber light source is used to calculate the flow ratio (sr) and the sr is used as the evaluation index of the performance test, and a method for performing the performance test on the self-adaptive optical system in a laboratory is designed and implemented. the method adopts an optical transfer function integration method to calculate the sr, so that the problem that the measurement target is not consistent with the ideal target energy in the sr calculation formula is avoided; in order to simulate the actual factors which influence the correction effect of the adaptive optical system, According to the method, different sh-wfs image signal-to-noise ratios can be simulated by changing the brightness of the light source, and the length and the greenwood frequency of different fried air are simulated by changing the position and the rotation speed of the turbulence simulator respectively. Finally, the performance test method designed in this paper is used in the performance test of the 97-unit self-adaptive optical experimental system. the performance test results show that for medium sh-wfs image signal-to-noise ratio, the self-adaptive optical experimental system can better carry out the closed-loop correction under the condition that the length of the fried atmosphere is more than 5cm and the greenwood frequency is lower than 60hz. The stability of the closed-loop control of the region reconstruction method is inferior to that of the mode reconstruction method, and the stability evaluation and improvement are studied by using the lyapunov stability theory. The error propagation factor based on the lyapunov stability theory can cover the effect of the integral gain and the response matrix on the stability. Therefore, the error propagation factor is used as the evaluation criterion of closed-loop control stability. and the corresponding relation between the sh-wfs sub-aperture and the deformation mirror actuator is determined by using the soutwell corresponding method to avoid the waffle mode which can be caused by the fried corresponding method and improve the stability. At the same time, the singular value filtering method of the response matrix is adopted to improve the stability, and the influence of the singular value filtering on the stability of the response matrix by the error propagation factor is proposed. By calculating the error propagation factor, the effect of different integral gain and the different number of singular values of the response matrix on the stability of closed-loop control is analyzed. The results of the analysis show that the singular value filtering of the response matrix can improve the stability of closed-loop control, and the analysis results show that the stability can be maintained by appropriately filtering the singular values of some of the response matrices when the integral gain is high. Finally, the system performance after 13 minimum singular values of the response matrix is measured by the experiment, and the measurement results show that the pre-wave correction capability of the adaptive optical system can still be better, and the small part singular value of the filter response matrix is not affected by the system performance.
【學(xué)位授予單位】:中國科學(xué)院研究生院(長(zhǎng)春光學(xué)精密機(jī)械與物理研究所)
【學(xué)位級(jí)別】:博士
【學(xué)位授予年份】:2016
【分類號(hào)】:O439
【相似文獻(xiàn)】
相關(guān)期刊論文 前10條
1 ;自適應(yīng)光學(xué)[J];中國光學(xué)與應(yīng)用光學(xué)文摘;2008年02期
2 ;自適應(yīng)光學(xué)[J];中國光學(xué)與應(yīng)用光學(xué)文摘;2008年03期
3 ;自適應(yīng)光學(xué)[J];中國光學(xué)與應(yīng)用光學(xué)文摘;1994年03期
4 ;自適應(yīng)光學(xué)[J];中國光學(xué)與應(yīng)用光學(xué)文摘;1996年01期
5 ;自適應(yīng)光學(xué)[J];中國光學(xué)與應(yīng)用光學(xué)文摘;1996年03期
6 姜文漢;自適應(yīng)光學(xué)與能動(dòng)光學(xué)[J];物理;1997年02期
7 ;自適應(yīng)光學(xué)在解決實(shí)際問題方面的應(yīng)用[J];激光與光電子學(xué)進(jìn)展;1997年11期
8 ;自適應(yīng)光學(xué)[J];中國光學(xué)與應(yīng)用光學(xué)文摘;1998年04期
9 ;自適應(yīng)光學(xué)[J];中國光學(xué)與應(yīng)用光學(xué)文摘;2000年06期
10 熊耀恒,白金明;應(yīng)用自適應(yīng)光學(xué)望遠(yuǎn)鏡所取得的天文觀測(cè)成果[J];云南天文臺(tái)臺(tái)刊;2000年02期
相關(guān)會(huì)議論文 前5條
1 薛忠晉;楊敏;朱林泉;;自適應(yīng)光學(xué)應(yīng)用技術(shù)[A];第六屆全國信息獲取與處理學(xué)術(shù)會(huì)議論文集(2)[C];2008年
2 朱林泉;牛晉川;朱蘇磊;;主動(dòng)光學(xué)與自適應(yīng)光學(xué)[A];第六屆全國信息獲取與處理學(xué)術(shù)會(huì)議論文集(2)[C];2008年
3 王國松;梁永輝;王三宏;毛宏軍;胡浩軍;;基于DSP的SPGD自適應(yīng)光學(xué)控制平臺(tái)研究[A];第九屆全國光電技術(shù)學(xué)術(shù)交流會(huì)論文集(下冊(cè))[C];2010年
4 鄭文佳;王春鴻;姜文漢;李梅;唐端午;;基于FPGA的自適應(yīng)光學(xué)實(shí)時(shí)波前斜率處理新方法[A];全國第一屆信號(hào)處理學(xué)術(shù)會(huì)議暨中國高科技產(chǎn)業(yè)化研究會(huì)信號(hào)處理分會(huì)籌備工作委員會(huì)第三次工作會(huì)議?痆C];2007年
5 夏雪球;梁永輝;毛宏軍;;基于桶中功率測(cè)量的隨機(jī)并行梯度下降白適應(yīng)光學(xué)光束凈化實(shí)驗(yàn)研究[A];第十四屆全國光學(xué)測(cè)試學(xué)術(shù)討論會(huì)論文(摘要集)[C];2012年
相關(guān)重要報(bào)紙文章 前4條
1 本報(bào)通訊員 傅雪軍 本報(bào)記者 朱會(huì)倫;祖國自適應(yīng)光學(xué)的驕傲[N];科技日?qǐng)?bào);2001年
2 本報(bào)特約撰稿 黃寰;中國之光 眩亮世界[N];四川科技報(bào);2007年
3 ;連接現(xiàn)實(shí)世界與信息世界[N];計(jì)算機(jī)世界;2001年
4 田京;德啟動(dòng)“大型望遠(yuǎn)鏡自適應(yīng)光學(xué)”研究計(jì)劃[N];大眾科技報(bào);2001年
相關(guān)博士學(xué)位論文 前8條
1 王亮;自適應(yīng)光學(xué)測(cè)試與系統(tǒng)優(yōu)化研究[D];中國科學(xué)院研究生院(長(zhǎng)春光學(xué)精密機(jī)械與物理研究所);2016年
2 梁波;自適應(yīng)光學(xué)像差矯正對(duì)雙眼疊加作用的影響研究[D];中國科學(xué)院研究生院(光電技術(shù)研究所);2013年
3 李抄;液晶自適應(yīng)光學(xué)眼底成像儀的實(shí)用化研究[D];中國科學(xué)院研究生院(長(zhǎng)春光學(xué)精密機(jī)械與物理研究所);2011年
4 王志斌;自適應(yīng)光學(xué)熒光閉環(huán)技術(shù)在共聚焦成像中的應(yīng)用[D];中國科學(xué)院研究生院(光電技術(shù)研究所);2015年
5 侯靜;自適應(yīng)光學(xué)波前探測(cè)新概念研究[D];中國人民解放軍國防科學(xué)技術(shù)大學(xué);2002年
6 王三宏;隨機(jī)并行梯度下降自適應(yīng)光學(xué)技術(shù)在光束凈化中的應(yīng)用[D];國防科學(xué)技術(shù)大學(xué);2009年
7 陳穎;自適應(yīng)光學(xué)仿真系統(tǒng)關(guān)鍵技術(shù)研究[D];電子科技大學(xué);2013年
8 付強(qiáng);天文望遠(yuǎn)鏡大氣湍流下優(yōu)化控制技術(shù)研究[D];中國科學(xué)院研究生院(光電技術(shù)研究所);2014年
相關(guān)碩士學(xué)位論文 前10條
1 王小妮;自適應(yīng)光學(xué)與在無線激光通信中的應(yīng)用[D];中北大學(xué);2008年
2 劉廣杰;微型自適應(yīng)光學(xué)儀器的研究與設(shè)計(jì)[D];昆明理工大學(xué);2014年
3 張利;基于自適應(yīng)光學(xué)的水下成像技術(shù)研究[D];中國科學(xué)院研究生院(西安光學(xué)精密機(jī)械研究所);2010年
4 周晗;基于GPU的自適應(yīng)光學(xué)性能測(cè)算系統(tǒng)研究[D];中國科學(xué)院研究生院(光電技術(shù)研究所);2014年
5 王國松;基于DSP的隨機(jī)并行梯度下降自適應(yīng)光學(xué)控制平臺(tái)研究[D];國防科學(xué)技術(shù)大學(xué);2010年
6 張超;基于FPGA的SPGD自適應(yīng)光學(xué)控制平臺(tái)研究[D];中國科學(xué)院研究生院(長(zhǎng)春光學(xué)精密機(jī)械與物理研究所);2013年
7 王保峰;基于自適應(yīng)光學(xué)的激光精跟蹤技術(shù)研究[D];中國科學(xué)院研究生院(西安光學(xué)精密機(jī)械研究所);2014年
8 胡謀法;自適應(yīng)光學(xué)波前重構(gòu)算法研究[D];國防科學(xué)技術(shù)大學(xué);2003年
9 陸鳳華;自適應(yīng)光學(xué)校正仿真中可視化數(shù)據(jù)交互的設(shè)計(jì)與實(shí)現(xiàn)[D];電子科技大學(xué);2011年
10 戴坤健;OAM光束傳輸特性及自適應(yīng)光學(xué)波前畸變校正技術(shù)研究[D];北京理工大學(xué);2015年
,本文編號(hào):2428837
本文鏈接:http://sikaile.net/shoufeilunwen/jckxbs/2428837.html