一維系統(tǒng)中的Majorana費米子和分數(shù)費米子
[Abstract]:In a system where the properties of low energy levels can be approximately described by Dirac electrons, Majorana fermions and fractional fermions appear in the form of zero-mode bound states at the boundary between the topological non-mediocre region and the mediocre region. The fundamental reason is that the scalar field coupled with Dirac spinor near the boundary presents a kink distribution. The scalar field of the kink type will open the energy gap of the system, and it is different from the scalar field of uniform distribution in topology. The Majorana fermion and fractional fermion appear under the nonmediocre scalar field of this topology. In the first chapter, we introduce several famous models and provide some theoretical support for the later chapters. In chapter 2, we study a one-dimensional Rashba system and find that the general periodic magnetic field can induce Majorana fermion and fractional fermion at its boundary. In this system, the Majorana fermion depends on the superconducting pairing potential introduced by the proximity effect, but the presence of fractional fermion is not necessary. Different from the uniform magnetic field, the periodic magnetic field can induce a lot of energy gaps in the energy spectrum of the system. When the chemical potential passes through any of the energy gaps, the introduction of the superconducting pairing potential makes the Majorana fermion appear at the system boundary. The fractional fermion appears in the overlapping part of the two energy gaps, and the period of the magnetic field must be an integer multiple of the coupling length of the Rashba spin orbit. The appearance of the two zero-mode bound states has no specific requirements for the specific form of magnetic field. In chapter 3, we study a one-dimensional single-chain lattice system composed of Majorana fermions. It is found that the tricritical Ising (TCI) phase transition occurs when the interaction of the system is strong enough. This type of phase transition is located at the intersection of the Ising phase transition and the first order phase transition and shows supersymmetry. We use the density matrix renormalization group method to study the system in detail and obtain the system parameters at the TCI phase transition point. We find that there is a strong interaction at this critical point, and it is difficult for a general system to achieve this intensity. However, we find that in a Majorana lattice system, in principle, the ratio of interaction to transition term can be arbitrarily changed by simply adjusting the chemical potential. So that it can reach the TCI phase transition point. In Chapter 4 we also consider the Majorana lattice system but this time it is a ladder shaped model which can be implemented on the surface of a topological insulator. Similar to the previous chapter, we find out the TCI phase transition point through detailed analytical and numerical analysis, the two sides of which are the Ising phase transition and the first order phase transition, respectively. The advantage of the model is that it does not require the system to have strong interaction. Finally, we discuss how to adjust the relevant parameters to make the system reach the TCI phase transition point and the characteristics of supersymmetry. In the last chapter, we briefly summarize the main findings of this paper and briefly discuss the possible research directions in the future.
【學位授予單位】:南京大學
【學位級別】:博士
【學位授予年份】:2016
【分類號】:O572.2
【相似文獻】
相關期刊論文 前10條
1 萬陵德;余洪偉;程寶蓮;魯公儒;;分立對稱性與三代費米子的統(tǒng)一(Ⅱ)[J];新鄉(xiāng)師范學院學報(自然科學版);1984年01期
2 江向東;;SU(6)大統(tǒng)一模型[J];高能物理與核物理;1984年03期
3 曾遠文;費米子算符的一些關系式[J];大學物理;1984年09期
4 鄭波;;可解的1+1維格點U(1)規(guī)范模型與費米子加倍問題[J];高能物理與核物理;1990年04期
5 羅向前;陳啟洲;;低維規(guī)范理論中的費米子真空凝聚[J];高能物理與核物理;1992年08期
6 許伯威;費米子數(shù)的時空性質[J];蘭州大學學報;1978年03期
7 許伯威;;費米子數(shù)的時空性質[J];高能物理與核物理;1979年01期
8 王維璽;;E_6的大統(tǒng)一模型[J];內蒙古大學學報(自然科學版);1982年01期
9 孫洪洲;韓其智;;玻色子費米子體系波函數(shù)的分類[J];高能物理與核物理;1982年03期
10 馬中騏;東方曉;杜東生;薛丕友;;一個可能的SU(9)大統(tǒng)一模型[J];高能物理與核物理;1982年03期
相關會議論文 前1條
1 甘姝;汪凱戈;;雙費米子的分束器干涉[A];第十三屆全國量子光學學術報告會論文摘要集[C];2008年
相關重要報紙文章 前4條
1 記者 常麗君;美科學家造出全新量子物質形態(tài)[N];科技日報;2012年
2 周清春;第六態(tài):敲開物質世界的又一扇大門[N];科技日報;2005年
3 張孟軍;科學家制出玻色-愛因斯坦凝聚態(tài)物質[N];科技日報;2003年
4 記者 毛磊;2003年度最重要物理學新聞[N];新華每日電訊;2003年
相關博士學位論文 前5條
1 朱小宇;一維系統(tǒng)中的Majorana費米子和分數(shù)費米子[D];南京大學;2016年
2 李偉;狄拉克費米子體系中的手征相變[D];中國科學技術大學;2010年
3 王寧;基于Majorana費米子的量子點體系中量子輸運和自旋性質的研究[D];河北師范大學;2015年
4 王景榮;狄拉克費米子體系中的量子相變和非費米液體行為[D];中國科學技術大學;2014年
5 李海濤;厚膜上的費米子共振態(tài)[D];蘭州大學;2011年
相關碩士學位論文 前6條
1 鄭翌潔;拓撲絕緣體臺階結構以及Majorana費米子的輸運特性[D];河北師范大學;2016年
2 苗子京;Majorana邊態(tài)導致的交叉Andreev反射研究[D];河北師范大學;2016年
3 崔會麗;基于Majorana費米子的熱電性質[D];河北師范大學;2014年
4 徐增光;膜世界上費米子的新局域化機制及f(R)膜世界引力共振態(tài)的研究[D];蘭州大學;2014年
5 寇朝帥;幺正費米氣體熱力學量的低溫與高溫展開[D];華中師范大學;2014年
6 毛普健;5維黑洞背景下費米子的霍金輻射[D];蘭州大學;2012年
,本文編號:2356033
本文鏈接:http://sikaile.net/shoufeilunwen/jckxbs/2356033.html