硅基納米光波導(dǎo)諧振腔非線性光學(xué)特性及調(diào)控
[Abstract]:The silicon-based nano-optical waveguide is a low-loss guided wave structure capable of realizing optical information transmission, coupling and interaction with a substance in a sub-wavelength scale, and a series of major research breakthroughs on silicon-on-insulator (soi) have enabled the silicon-based material to be considered an ideal platform for building an integrated photonic device. such a full-light interconnection device, however, must be based on low-cost technology if it is to be applied to the mass consumer market. So the micro-nano-optical device with high integration of silicon-based photonic technology has raised the research upsurge of academic and industry in the world. In this paper, the related properties of silicon-based waveguide resonators and their applications are analyzed and studied. The resonator is mainly composed of a nano-waveguide grating, a transmission optical waveguide and a high-quality factor (Q) annular micro-cavity to be integrated in the same plane. The main influencing factors of the high-performance and high-integrated silicon waveguide resonator are: high-efficiency light introduction (coupling), low loss of the transmission waveguide, and high-Q resonant cavity. In this paper, based on the single mode (TE mode) transmission of the nano-optical waveguide, how to suppress the transmission loss of the waveguide, to improve the vertical coupling efficiency of the nano-grating, to maintain the high Q value of the resonant cavity for theoretical analysis, and then to test and analyze the temperature characteristic and the optical linear characteristic of the waveguide resonator, The optical non-linear characteristic and all-optical switch and other related applications have been experimentally studied. The content of the relevant research can be reduced to the following aspects: 1. The optical transmission characteristics of the nano-grating, the strip-shaped waveguide and the optical waveguide micro-cavity in the structural unit of the nano-optical waveguide are analyzed by using the FDTD and RSOFT software. firstly, carrying out numerical analysis on the single-mode transmission characteristic of the transmission optical waveguide, and analyzing and optimizing the transmission loss of the optical waveguide; secondly, based on the optical single-mode transmission, the calculation method of the grating coupling efficiency is given, the main parameter grating depth influenced by the grating coupling efficiency is obtained, and the period and the duty ratio are optimized and analyzed, the nano-grating structure with the period of 590nm and the duty ratio of 50 percent is finally determined, the width of the transmission nano-optical waveguide is 450nm, and the thickness is 220nm. On the basis of the theoretical analysis of the main performance parameters of the micro-ring resonator, the influence mechanism of the coupling coefficient and transmission loss of the micro-cavity of the nano-optical waveguide and the transmission waveguide is analyzed, and the relevant parameters are simulated and analyzed. and finally, the micro-cavity resonator integrated unit is optimized and designed by the L-Edit software. the loss of the transmission waveguide is reduced, the technical difficulties of the adjacent effect, the hysteresis effect, the micro-mask effect and the like in the micro-nano integral preparation are overcome, the silicon-based integrated nano-grating, a transmission optical waveguide and a series of micro-cavity resonator structures with different structures are prepared, Based on the high-Q single-ring micro-cavity, the linear characteristic of the micro-cavity is firstly tested and analyzed, the micro-cavity with a transmission loss of 0.532dB/ cm and a quality factor of 105 is obtained, and the temperature characteristic of the micro-cavity is tested, and the linearity of the resonance wavelength is 54. 1pm/ DEG C. Secondly, the optical signal control technology of the silicon-based micro-ring resonator was studied, and the optical thermal nonlinear characteristics of the micro-cavity were analyzed by single-beam power control and injection, and the red-shift threshold of the resonance peak was 0.34nm. Based on the theoretical analysis of the optical switch, the scheme of the full-optical switch of the micro-ring resonator based on the thermal non-linear effect is studied, and the full optical switch with the extinction ratio of 15dB and the switching time of the order of microsecond is realized by controlling the optical power of the corresponding wavelength. Secondly, the optical delay characteristics of the single micro-ring resonator are analyzed. By controlling the optical power of two adjacent resonant wavelengths, it is found that the magnitude of the detected optical power is in direct proportion to the amount of light delay, and the maximum delay amount of 15. 4ps and 8. 5ps is finally obtained by mutual control.
【學(xué)位授予單位】:中北大學(xué)
【學(xué)位級別】:博士
【學(xué)位授予年份】:2016
【分類號】:TN252
【相似文獻】
相關(guān)期刊論文 前10條
1 ;光波導(dǎo)參數(shù)測試[J];中國光學(xué)與應(yīng)用光學(xué)文摘;2007年01期
2 楊建義,江曉清,周偉勤,孫一翎,周強,,王明華;金屬覆蓋型光波導(dǎo)極化器的分析和設(shè)計[J];光電子·激光;1996年06期
3 劉育梁,王啟明;硅基光波導(dǎo)結(jié)構(gòu)與器件[J];紅外與毫米波學(xué)報;1996年01期
4 袁明權(quán),胡禮中;任意截面光波導(dǎo)的模式計算[J];光學(xué)學(xué)報;2001年04期
5 李廣波;龍文華;賈科淼;江曉清;王明華;王躍林;楊建義;;玻璃基硅光波導(dǎo)的研制[J];光學(xué)儀器;2005年06期
6 張夕飛;馬長峰;;基于變量變換伽遼金法光波導(dǎo)半矢量分析[J];計算物理;2006年02期
7 徐建鋒;薄中陽;白劍;楊國光;;彎曲光波導(dǎo)模擬優(yōu)化研究[J];光電子·激光;2006年09期
8 張金令;劉永智;;摻釹激光材料制作光波導(dǎo)研究進展[J];科技咨詢導(dǎo)報;2007年30期
9 嚴朝軍;彭文標;萬均力;;脊型光波導(dǎo)偏振模場有限差分分析[J];陜西理工學(xué)院學(xué)報(自然科學(xué)版);2007年04期
10 張金令;劉永智;張曉霞;;離子交換法制作摻釹玻璃光波導(dǎo)實驗研究[J];半導(dǎo)體光電;2008年04期
相關(guān)會議論文 前10條
1 李廣波;龍文華;賈科淼;江曉清;王明華;王躍林;楊建義;;玻璃基硅光波導(dǎo)的研制[A];浙江省光學(xué)學(xué)會第九屆學(xué)術(shù)年會暨新型光電技術(shù)青年論壇論文集[C];2005年
2 湯恒晟;李毅剛;段文濤;劉麗英;徐雷;;溶膠-凝膠法制備摻鉺光波導(dǎo)薄膜的研究[A];上海市激光學(xué)會2005年學(xué)術(shù)年會論文集[C];2005年
3 費旭;萬瑩;崔占臣;;用于制作光波導(dǎo)器件的含氟光刻膠的合成與表征[A];2007年全國高分子學(xué)術(shù)論文報告會論文摘要集(下冊)[C];2007年
4 費旭;胡娟;崔占臣;;含氟聚酯型聚合物光波導(dǎo)材料的合成[A];2005年全國高分子學(xué)術(shù)論文報告會論文摘要集[C];2005年
5 沈浩;李新碗;葉愛倫;;光波微環(huán)形腔的耦合特性及其在光交換網(wǎng)絡(luò)中的應(yīng)用研究[A];2003'全國微波毫米波會議論文集[C];2003年
6 萬瑩;費旭;周金山;崔占臣;;用于制作光波導(dǎo)器件的新型高含氟光刻膠的合成與表征[A];2009年全國高分子學(xué)術(shù)論文報告會論文摘要集(下冊)[C];2009年
7 冷月華;賈連希;胡挺;楊林;楊華軍;;亞微米SOI光波導(dǎo)的模式及偏振特性分析[A];2009年先進光學(xué)技術(shù)及其應(yīng)用研討會論文集(上冊)[C];2009年
8 石邦任;武繼江;孔梅;劉支華;;退火質(zhì)子交換LiNbO_3光波導(dǎo)的模式解[A];全國第十一次光纖通信暨第十二屆集成光學(xué)學(xué)術(shù)會議(OFCIO’2003)論文集[C];2003年
9 解琪;許榮國;范紀紅;楊冶平;楊照金;;Y型光波導(dǎo)分束比和插入損耗測量[A];第十二屆全國光學(xué)測試學(xué)術(shù)討論會論文(摘要集)[C];2008年
10 馮瑩;季家熔;鐘欽;林亞風(fēng);黃宗升;魏文儉;;光波導(dǎo)偏振消光比測試儀[A];第九屆全國光學(xué)測試學(xué)術(shù)討論會論文(摘要集)[C];2001年
相關(guān)博士學(xué)位論文 前10條
1 張連;離子輻照光學(xué)晶體及硫系玻璃光波導(dǎo)制備及特性研究[D];山東大學(xué);2015年
2 賈曰辰;介電晶體通道光波導(dǎo)的制備及其激光與二次諧波產(chǎn)生[D];山東大學(xué);2015年
3 何小東;離子液體流體光波導(dǎo)的構(gòu)建及其傳輸特性與光操控研究[D];蘭州大學(xué);2015年
4 仝曉剛;硅基納米光波導(dǎo)諧振腔非線性光學(xué)特性及調(diào)控[D];中北大學(xué);2016年
5 賈傳磊;離子注入法與射頻濺射法制備光波導(dǎo)的研究[D];山東大學(xué);2006年
6 楊柳;基于強限制光波導(dǎo)的微環(huán)諧振器及其熱光特性研究[D];浙江大學(xué);2009年
7 金曦;氟化聚酰亞胺的合成、性能及其光波導(dǎo)制作工藝的研究[D];華中科技大學(xué);2009年
8 張阜文;新型超寬帶集成光波導(dǎo)無線接收的研究[D];電子科技大學(xué);2004年
9 張希珍;1.55μm波段聚合物光波導(dǎo)放大器的基礎(chǔ)研究[D];吉林大學(xué);2007年
10 張丹;摻鉺有機聚合物光波導(dǎo)放大器的理論研究與實驗制備[D];吉林大學(xué);2008年
相關(guān)碩士學(xué)位論文 前10條
1 任洪;離子交換四分支光波導(dǎo)的設(shè)計,制備與特性測試[D];吉林大學(xué);2009年
2 李巖;亞微米硅基光波導(dǎo)的設(shè)計與模式特性研究[D];長春理工大學(xué);2010年
3 楊紀超;硅光波導(dǎo)及器件結(jié)構(gòu)的關(guān)鍵技術(shù)研究[D];浙江大學(xué);2011年
4 柴立群;光波導(dǎo)數(shù)值模擬及實驗研究[D];電子科技大學(xué);2000年
5 熊前進;摻鉺光波導(dǎo)放大器的理論與設(shè)計[D];大連理工大學(xué);2000年
6 慕善坤;鉺鐿共摻光波導(dǎo)放大器的理論分析與實驗研究[D];吉林大學(xué);2007年
7 陳聰;鉺鐿共摻有機光波導(dǎo)放大器的基礎(chǔ)研究[D];吉林大學(xué);2007年
8 裴金花;離子交換掩埋條形介質(zhì)光波導(dǎo)的制備與特性測試[D];吉林大學(xué);2007年
9 齊飛;摻鉺聚合物光波導(dǎo)放大器的模擬與制備[D];吉林大學(xué);2008年
10 鄭斌;玻璃基雙層掩埋式光波導(dǎo)的制備與表征[D];浙江大學(xué);2012年
本文編號:2329737
本文鏈接:http://sikaile.net/shoufeilunwen/jckxbs/2329737.html