粒子數(shù)不守恒量子可積模型的本征值和本征態(tài)
[Abstract]:The object of this paper is quantum integrable model, which plays an important role in mathematics and physics. In order to solve the eigenvalue of quantum integrable model and inverse Bethe state, we introduce and utilize several most commonly used methods: coordinate Bethe Ansatz method, algebraic Bethe Ansatz method, T-Q relation proposed by Baxter. The method of separating variables and the method of non-diagonal Bethe Ansatz. In the first part of this paper, we briefly introduce integrability, Yang-Baxter equation, reflection equation, quantum integrable model and several classical methods. In the second part, we study counterperiodic XXZ spin chain, open boundary XXX spin chain and open boundary XXZ spin chain, and give a set of methods based on nonhomogeneous T-Q relation and Bethe state inversion system based on SoV basis. The concrete idea of inversion system Bethe states is as follows: firstly, we use the non-diagonal Bethe Ansatz method to construct the non-homogeneous T-Q relation of the system and give the corresponding Bethe Ansatz equation; Secondly, we use the SoV method to construct a set of complete bases in the system Hilbert space, which are the eigenstates or pseudo-eigenstates of an operator X (u). Then we obtain the inner product of the complete basis and the eigenstates of the transition matrix, which can be used to determine the eigenstates of the transition matrix. Finally, we construct the Bethe state of the system by using the operator {X (uj)} and a suitable reference state, and prove that it is the eigenstate of the transfer matrix by using the inner product of the previous step. The reference state in the Bethe state of the counter-periodic XXZ spin chain is a highly entangled superposition state, and the corresponding operator X (uj) is a non-diagonal element of a single-valued matrix. The Bethe states of open boundary XXX spin chains and open boundary XXX spin chains have similar forms. We introduce two sets of transformations to find the operators and reference states to construct Bethe states respectively. The results show that the triangulated K-matrix gives the reference state and the diagonalized K-matrix gives the production operator. In the third part, we give the one-dimensional supersymmetric t-J model with non-parallel boundary field and the strict solution of the AdS/CFT spin chain with non-diagonal boundary, respectively. By using coordinate Bethe Ansatz or algebraic Bethe Ansatz method, we transform the eigenvalue problem of these two models into the eigenvalue problem of spin chain model with nonparallel boundary field, and the strict solution of this model has been given by the non-diagonal Bethe Ansatz method. Based on the results of the non-diagonal Bethe Ansatz method, we obtain the strict solutions of these two nontrivial models for the first time.
【學位授予單位】:中國科學院大學(中國科學院物理研究所)
【學位級別】:博士
【學位授予年份】:2017
【分類號】:O41
【相似文獻】
相關期刊論文 前10條
1 范洪義;產(chǎn)生標符a~+本征態(tài)恒等于零嗎?[J];大學物理;1985年07期
2 范嗣林;互易厄密矩陣共同本征態(tài)計算的“組合法”[J];四川師范學院學報(自然科學版);1997年03期
3 梁麥林;α~(2M)本征態(tài)的偶奇表示形式[J];量子電子學報;1998年03期
4 吳式玉,周子舫;邊界條件對無序體系本征態(tài)的影響[J];物理學報;1984年12期
5 歐發(fā);光子場的相位本征態(tài)的表示及有關問題[J];量子電子學;1985年02期
6 時維春,常健斌,韓士杰;構造α~N的各正交本征態(tài)的方法[J];物理學報;1993年03期
7 張炎勛;馬愛群;時維春;;α~5的正交歸一本征態(tài)的某些非經(jīng)典特性研究[J];哈爾濱師范大學自然科學學報;1993年03期
8 蔡維理,范洪義;對于“相干態(tài)是a~(-1)的本征態(tài)嗎”一文的答復[J];大學物理;1998年05期
9 夏道澄;一維晶格中電子本征態(tài)特征與動力學行為[J];菏澤師專學報;2001年04期
10 孫金祚,王傳奎,王繼鎖;Aubry模型的Anderson轉(zhuǎn)變區(qū)與能量的關系[J];物理學報;1991年11期
相關會議論文 前1條
1 施冬梅;謝俊磊;杜仕國;趙文軫;;Ni-Co-P鍍覆本征態(tài)聚苯胺的電磁和吸波性能[A];2009中國功能材料科技與產(chǎn)業(yè)高層論壇論文集[C];2009年
相關博士學位論文 前1條
1 張鑫;粒子數(shù)不守恒量子可積模型的本征值和本征態(tài)[D];中國科學院大學(中國科學院物理研究所);2017年
相關碩士學位論文 前3條
1 王曉華;高次冪湮滅算符本征態(tài)和量子力學非定域性檢驗研究[D];西南交通大學;2011年
2 張義勇;量子力學中幾何相位的研究[D];東北師范大學;2006年
3 來yN敏;光學態(tài)的非經(jīng)典特性及N粒子相容可觀測量共同本征態(tài)的研究[D];寧波大學;2009年
,本文編號:2326802
本文鏈接:http://sikaile.net/shoufeilunwen/jckxbs/2326802.html