天堂国产午夜亚洲专区-少妇人妻综合久久蜜臀-国产成人户外露出视频在线-国产91传媒一区二区三区

粒子數(shù)不守恒量子可積模型的本征值和本征態(tài)

發(fā)布時間:2018-11-12 10:08
【摘要】:本論文的研究對象是量子可積模型,一類在數(shù)學及物理領域均起著重要作用的模型。在文中為了求解量子可積模型的本征值和反演Bethe態(tài),我們介紹和利用了幾種最常用的方法:坐標Bethe Ansatz方法,代數(shù)Bethe Ansatz方法,Baxter提出的T-Q關系,分離變量法以及非對角Bethe Ansatz方法。文章的第一部分中我們對可積性,Yang-Baxter方程,反射方程,量子可積模型以及幾種經(jīng)典的方法做了簡單的介紹。第二部分我們分別研究了反周期XXZ自旋鏈,開邊界XXX自旋鏈與開邊界XXZ自旋鏈,并且給出了一套基于非齊次T-Q關系和SoV基反演系統(tǒng)Bethe態(tài)的方法。反演系統(tǒng)Bethe態(tài)的具體思路是:首先我們利用非對角Bethe Ansatz方法構建系統(tǒng)的非齊次T-Q關系式并且給出相應的Bethe Ansatz方程;其次我們利用SoV方法構建系統(tǒng)Hilbert空間的一組完備基,這組基是某個算符X(u)的本征態(tài)或者贗本征態(tài);接著我們求出這組完備基與轉(zhuǎn)移矩陣本征態(tài)的內(nèi)積,這組內(nèi)積可以確定轉(zhuǎn)移矩陣本征態(tài);最后我們利用算符{X(uj)}和一個合適的參考態(tài)構建系統(tǒng)的Bethe態(tài)并利用上一步求出內(nèi)積證明其是轉(zhuǎn)移矩陣本征態(tài)。構建的反周期XXZ自旋鏈Bethe態(tài)中的參考態(tài)是個高度糾纏的迭加態(tài),對應的算符X(uj)是單值矩陣的非對角元。開邊界XXX自旋鏈和開邊界XXX自旋鏈的Bethe態(tài)有著相似的形式,我們引入兩組或者兩套變換分別找到了構建Bethe態(tài)的算符和參考態(tài)。最后的結(jié)果顯示三角化K-矩陣給出參考態(tài),對角化K+矩陣給出產(chǎn)生算符。第三部分我們分別給出了具有非平行邊界場的一維超對稱t-J模型以及具有非對角邊界的AdS/CFT自旋鏈的嚴格解。利用坐標Bethe Ansatz或者代數(shù)Bethe Ansatz方法,我們將這兩種模型的本征值問題轉(zhuǎn)換成具有非平行邊界場的自旋鏈模型的本征值問題,而這一模型的嚴格解已經(jīng)由非對角Bethe Ansatz方法給出。根據(jù)非對角Bethe Ansatz方法的結(jié)果,我們首次給出這兩種非平凡模型的嚴格解。
[Abstract]:The object of this paper is quantum integrable model, which plays an important role in mathematics and physics. In order to solve the eigenvalue of quantum integrable model and inverse Bethe state, we introduce and utilize several most commonly used methods: coordinate Bethe Ansatz method, algebraic Bethe Ansatz method, T-Q relation proposed by Baxter. The method of separating variables and the method of non-diagonal Bethe Ansatz. In the first part of this paper, we briefly introduce integrability, Yang-Baxter equation, reflection equation, quantum integrable model and several classical methods. In the second part, we study counterperiodic XXZ spin chain, open boundary XXX spin chain and open boundary XXZ spin chain, and give a set of methods based on nonhomogeneous T-Q relation and Bethe state inversion system based on SoV basis. The concrete idea of inversion system Bethe states is as follows: firstly, we use the non-diagonal Bethe Ansatz method to construct the non-homogeneous T-Q relation of the system and give the corresponding Bethe Ansatz equation; Secondly, we use the SoV method to construct a set of complete bases in the system Hilbert space, which are the eigenstates or pseudo-eigenstates of an operator X (u). Then we obtain the inner product of the complete basis and the eigenstates of the transition matrix, which can be used to determine the eigenstates of the transition matrix. Finally, we construct the Bethe state of the system by using the operator {X (uj)} and a suitable reference state, and prove that it is the eigenstate of the transfer matrix by using the inner product of the previous step. The reference state in the Bethe state of the counter-periodic XXZ spin chain is a highly entangled superposition state, and the corresponding operator X (uj) is a non-diagonal element of a single-valued matrix. The Bethe states of open boundary XXX spin chains and open boundary XXX spin chains have similar forms. We introduce two sets of transformations to find the operators and reference states to construct Bethe states respectively. The results show that the triangulated K-matrix gives the reference state and the diagonalized K-matrix gives the production operator. In the third part, we give the one-dimensional supersymmetric t-J model with non-parallel boundary field and the strict solution of the AdS/CFT spin chain with non-diagonal boundary, respectively. By using coordinate Bethe Ansatz or algebraic Bethe Ansatz method, we transform the eigenvalue problem of these two models into the eigenvalue problem of spin chain model with nonparallel boundary field, and the strict solution of this model has been given by the non-diagonal Bethe Ansatz method. Based on the results of the non-diagonal Bethe Ansatz method, we obtain the strict solutions of these two nontrivial models for the first time.
【學位授予單位】:中國科學院大學(中國科學院物理研究所)
【學位級別】:博士
【學位授予年份】:2017
【分類號】:O41

【相似文獻】

相關期刊論文 前10條

1 范洪義;產(chǎn)生標符a~+本征態(tài)恒等于零嗎?[J];大學物理;1985年07期

2 范嗣林;互易厄密矩陣共同本征態(tài)計算的“組合法”[J];四川師范學院學報(自然科學版);1997年03期

3 梁麥林;α~(2M)本征態(tài)的偶奇表示形式[J];量子電子學報;1998年03期

4 吳式玉,周子舫;邊界條件對無序體系本征態(tài)的影響[J];物理學報;1984年12期

5 歐發(fā);光子場的相位本征態(tài)的表示及有關問題[J];量子電子學;1985年02期

6 時維春,常健斌,韓士杰;構造α~N的各正交本征態(tài)的方法[J];物理學報;1993年03期

7 張炎勛;馬愛群;時維春;;α~5的正交歸一本征態(tài)的某些非經(jīng)典特性研究[J];哈爾濱師范大學自然科學學報;1993年03期

8 蔡維理,范洪義;對于“相干態(tài)是a~(-1)的本征態(tài)嗎”一文的答復[J];大學物理;1998年05期

9 夏道澄;一維晶格中電子本征態(tài)特征與動力學行為[J];菏澤師專學報;2001年04期

10 孫金祚,王傳奎,王繼鎖;Aubry模型的Anderson轉(zhuǎn)變區(qū)與能量的關系[J];物理學報;1991年11期

相關會議論文 前1條

1 施冬梅;謝俊磊;杜仕國;趙文軫;;Ni-Co-P鍍覆本征態(tài)聚苯胺的電磁和吸波性能[A];2009中國功能材料科技與產(chǎn)業(yè)高層論壇論文集[C];2009年

相關博士學位論文 前1條

1 張鑫;粒子數(shù)不守恒量子可積模型的本征值和本征態(tài)[D];中國科學院大學(中國科學院物理研究所);2017年

相關碩士學位論文 前3條

1 王曉華;高次冪湮滅算符本征態(tài)和量子力學非定域性檢驗研究[D];西南交通大學;2011年

2 張義勇;量子力學中幾何相位的研究[D];東北師范大學;2006年

3 來yN敏;光學態(tài)的非經(jīng)典特性及N粒子相容可觀測量共同本征態(tài)的研究[D];寧波大學;2009年

,

本文編號:2326802

資料下載
論文發(fā)表

本文鏈接:http://sikaile.net/shoufeilunwen/jckxbs/2326802.html


Copyright(c)文論論文網(wǎng)All Rights Reserved | 網(wǎng)站地圖 |

版權申明:資料由用戶92504***提供,本站僅收錄摘要或目錄,作者需要刪除請E-mail郵箱bigeng88@qq.com