手征有效場(chǎng)論中質(zhì)子自旋及其它八重態(tài)重子軸荷的研究
[Abstract]:Further to the 1988 EMC polarization-depth inelastic scattering experiment, which measured almost zero quark spin contributions in protons, CERN, DESY, JLab, RHIC and SLAC also measured the spin structures of protons. The measurements show that the nuclear flavor state axial charge 0A (interpreted as quark spin contributions in protons) is about 0.35% at the energy scale of 3 Ge V2. Although this is different from the EMC measurements, it is still very small compared to the earlier quark models. In the static quark model, quarks contribute all the spins of protons; in the relativistic quark model, quarks contribute 60% of the spins of protons and 40% of the angular momentum of quarks. What about spin crisis or spin perplexity? This has also sparked theoretical and experimental studies of the internal structure of proton spin in the last 30 years. Orbital angular momentum, QCD gluon correction, singular quark contribution, SU (3) breakage of octet axial load 8a, etc. The present experimental data indicate that the proton spin puzzle is the valence quark effect, and the valence quark contribution to the singlet axial load 0A is almost full of measured values. In deep inelastic scattering experiments, the theoretical basis for explaining the observed structure function is the chiral symmetry of QCD.QCD at the limit of zero quark mass.Chiral effective field theory is the low-efficiency theory of QCD.Chiral chiral symmetry breaking produces Goldstone bosons as an effective meson field of chiral effective theory.Absorption and emission Virtual mesons play an important role in describing the properties of hadrons. Chiral effective field theory, unlike the general phenomenological model, is a relatively systematic theory. Based on the same chiral symmetry as QCD, it is widely used in hadronic physics and has many successful applications in the study of hadronic spectra and hadronic structures. The general nature of evolution leads to the conclusion that the natural scales matching the QCD quark model are very low, so most of the proton momentum is carried by valence quarks, and gluons can be thought to have been accumulated in theory. The model gives different energy scales. Therefore, we study the spin of protons and the axial loads of other octet baryons by using the effective field theory. The spin and taste structures of baryons are redistributed under the constraint of chiral symmetry. The single gluon exchange (OGE) effect, though not in the chiral effective field theory, plays a very important role in spin-dependent physical quantities, so we also include the OGE exchange effect in our calculations. We have calculated the spins of each quark separately. The spin contribution, therefore, can be obtained both singlet and non-singlet axial loads a_3 (g_A), a_8. For the explanation of proton spin, our calculation gives three reasonable values of axial loads at the same time, which are in good agreement with the experiment and are superior to other models. Other models only give some reasonable explanations of axial loads. The following is a list for proton calculations. The main conclusions are a s follows: 1. By taking the experimental value a_3=1.27, the only parameter in our calculation is fitted. The low-energy spin constant S_q~0.88q s, which reflects the magnitude of relativity and confinement effect, is smaller than the traditional quark model (without considering relativistic effect), and is larger than the extreme relativistic effect ~0.65. We use this parameter to calculate a_8, a_0, and the calculated values are very consistent with the experimental values of ~0.58 under the assumption of superon beta decay SU(3). 3. For the singlet axial load a_0, we give a low energy scale suitable for the quark model. Quark spin contribution a_0~0.55 and quark distribution u~0.91,? D~-0.36,? S~-0.01. By relativistic effect, meson cloud and OGE modification, the contribution of quark spin of proton is changed from the initial quark model contribution to about half of the contribution. 4. Because the anomalous dimension of the single state axial vector current is not zero, the singlet axial load 0A is scale-dependent, and through appropriate modification Evolution model only gives qualitative analysis before our calculation (Jaffe 1987). Our calculation gives a precise quantitative description, which explains the proton puzzle very well. 5. For the contribution of the singular quark spin, our results are negative. Our calculations provide a very important insight into the proton puzzle. Mesoon clouds, OGE effects and relativistic effects transform the quark's spin into orbital angular momentum, and the experimental values are obtained by evolution. Our calculations directly give the spins of quarks of various flavors. Meanwhile, in our calculation, we change the form of hadronic coupling constants D, F, C, and truncation function. The results are all within the error range of our estimation, which shows the stability of the calculation. Spin and axial load. The low-energy spin constant s_q fitted in the proton is used in the calculation, and there are no other parameters. The isospin vector axial load calculated by us is very close to other theoretical calculations and the lattice data, which shows that our calculation results are reasonable. We have calculated the octet axial load 8a,... For the baryon of the octet state. Spin_is similar to that obtained by protons. At low energy scales, the contribution of quark spin is about 50(25)60% of the valence quark region, and evolves to the experimental energy scales 3 Ge V~2, resulting in -0.35. The contribution of the middle D quark is very small ~0.01-0.02, and the spin direction is opposite to the baryon spin direction.
【學(xué)位授予單位】:吉林大學(xué)
【學(xué)位級(jí)別】:博士
【學(xué)位授予年份】:2016
【分類號(hào)】:O572.33
【相似文獻(xiàn)】
相關(guān)期刊論文 前10條
1 金長(zhǎng)浩;;下夸克質(zhì)量和味混合[J];高能物理與核物理;1988年02期
2 李衛(wèi)國(guó);頂夸克已被發(fā)現(xiàn)[J];物理;1995年08期
3 鄭志鵬,李衛(wèi)國(guó);頂夸克已被確認(rèn)[J];中國(guó)科學(xué)基金;1995年02期
4 鄧炳坤,郁忠強(qiáng);頂夸克的發(fā)現(xiàn)[J];現(xiàn)代物理知識(shí);1995年05期
5 ;科學(xué)家精確測(cè)出頂夸克質(zhì)量[J];內(nèi)蒙古科技大學(xué)學(xué)報(bào);2014年01期
6 ;夸克的發(fā)現(xiàn)[J];國(guó)外科技動(dòng)態(tài);2005年03期
7 焦善慶,,雷曉蔚;夸克質(zhì)量譜的維象計(jì)算[J];大自然探索;1995年02期
8 林麗;;對(duì)頂夸克質(zhì)量的最新測(cè)定[J];科學(xué);2004年05期
9 何景棠;尋找多夸克新粒子態(tài)的實(shí)驗(yàn)進(jìn)展[J];物理;2005年11期
10 黃虹霞;龔麗英;平加倫;;夸克蛻定域色屏蔽模型中的五夸克系統(tǒng)Θ~+[J];南京師大學(xué)報(bào)(自然科學(xué)版);2005年04期
相關(guān)會(huì)議論文 前9條
1 高道國(guó);;π云孤粒子袋模型的質(zhì)心修正和夸克質(zhì)量效應(yīng)[A];第八屆全國(guó)核物理會(huì)議文摘集(上冊(cè))[C];1991年
2 楊本立;趙瑞珍;張曉紅;焦善慶;溫誠(chéng)忠;王蜀娟;;自旋S=(1/2)混合對(duì)稱和S=(3/2)全對(duì)稱夸克質(zhì)譜規(guī)律[A];數(shù)學(xué)·物理·力學(xué)·高新技術(shù)研究進(jìn)展——2000(8)卷——中國(guó)數(shù)學(xué)力學(xué)物理學(xué)高新技術(shù)交叉研究會(huì)第8屆學(xué)術(shù)研討會(huì)論文集[C];2000年
3 張金偉;楊本立;;受激夸克[S=(3/2)]態(tài)下核子結(jié)構(gòu)函數(shù)(Ⅱ)[A];數(shù)學(xué)·物理·力學(xué)·高新技術(shù)研究進(jìn)展——2000(8)卷——中國(guó)數(shù)學(xué)力學(xué)物理學(xué)高新技術(shù)交叉研究會(huì)第8屆學(xué)術(shù)研討會(huì)論文集[C];2000年
4 焦善慶;楊波;;原子核中的多夸克態(tài)[A];數(shù)學(xué)·物理·力學(xué)·高新技術(shù)研究進(jìn)展(一九九六·第六期)——中國(guó)數(shù)學(xué)力學(xué)物理學(xué)高新技術(shù)交叉研究會(huì)第6屆學(xué)術(shù)研討會(huì)論文集[C];1996年
5 平榮剛;鄒冰松;;色單態(tài)xcJ→φφ中衰變中的夸克質(zhì)量修正[A];第十屆全國(guó)中高能核物理大會(huì)暨第五屆全國(guó)中高能核物理專題研討會(huì)論文摘要集[C];2004年
6 張金偉;肖湘竹;張小紅;;含受激夸克(s=3/2)的~(56)Fe核結(jié)構(gòu)函數(shù)[A];中國(guó)工程物理研究院科技年報(bào)(1999)[C];1999年
7 焦善慶;王蜀娟;楊本立;胡佐文;;含b、t夸克的SU(3)亞群對(duì)稱及重子質(zhì)量計(jì)算[A];數(shù)學(xué)·物理·力學(xué)·高新技術(shù)研究進(jìn)展——1998(7)卷——中國(guó)數(shù)學(xué)力學(xué)物理學(xué)高新技術(shù)交叉研究會(huì)第7屆學(xué)術(shù)研討會(huì)論文集[C];1998年
8 楊本立;胡佐文;焦善慶;江光佐;;含t、b夸克的SU(3)亞群對(duì)稱及介子質(zhì)量譜[A];數(shù)學(xué)·物理·力學(xué)·高新技術(shù)研究進(jìn)展——1998(7)卷——中國(guó)數(shù)學(xué)力學(xué)物理學(xué)高新技術(shù)交叉研究會(huì)第7屆學(xué)術(shù)研討會(huì)論文集[C];1998年
9 姚濤;;用組合模型對(duì)橢圓流的研究[A];中國(guó)物理學(xué)會(huì)高能物理分會(huì)第七屆學(xué)術(shù)年會(huì)理論分會(huì)場(chǎng)二論文集[C];2006年
相關(guān)重要報(bào)紙文章 前2條
1 記者 張夢(mèng)然;科學(xué)家測(cè)出迄今最精確的頂夸克質(zhì)量[N];科技日?qǐng)?bào);2014年
2 劉霞;科學(xué)家“稱”出了三個(gè)最輕夸克的質(zhì)量[N];科技日?qǐng)?bào);2010年
相關(guān)博士學(xué)位論文 前10條
1 王聲權(quán);最大共形原理及其在高能物理過(guò)程中的應(yīng)用[D];重慶大學(xué);2015年
2 初鵬程;夸克物質(zhì)與夸克星的唯象模型研究[D];上海交通大學(xué);2014年
3 李洪娜;手征有效場(chǎng)論中質(zhì)子自旋及其它八重態(tài)重子軸荷的研究[D];吉林大學(xué);2016年
4 李華;夸克星的模型研究[D];南京大學(xué);2011年
5 鄧成榮;多夸克態(tài)的顏色結(jié)構(gòu)與模型研究[D];南京師范大學(xué);2008年
6 王金誠(chéng);高密夸克物質(zhì)與核物質(zhì)中夸克配對(duì)的研究[D];中國(guó)科學(xué)技術(shù)大學(xué);2011年
7 陳壽萬(wàn);夸克物質(zhì)中自旋效應(yīng)和粘滯效應(yīng)的研究[D];中國(guó)科學(xué)技術(shù)大學(xué);2009年
8 李霄鵬;高能對(duì)撞機(jī)單個(gè)頂夸克產(chǎn)生過(guò)程中的R字稱破壞效應(yīng)的精確研究[D];中國(guó)科學(xué)技術(shù)大學(xué);2013年
9 高鐵軍;新物理對(duì)頂夸克稀有衰變過(guò)程的輻射修正[D];大連理工大學(xué);2013年
10 高建華;高能重離子碰撞中的夸克極化現(xiàn)象研究[D];山東大學(xué);2008年
相關(guān)碩士學(xué)位論文 前10條
1 楊慧迪;頂夸克伙伴T在高能對(duì)撞機(jī)上的可能物理信號(hào)[D];遼寧師范大學(xué);2010年
2 劉名聲;手征夸克模型中非奇異六夸克態(tài)與Zc粒子結(jié)構(gòu)的研究[D];內(nèi)蒙古大學(xué);2015年
3 李昕;強(qiáng)子—夸克混合星物質(zhì)狀態(tài)方程的研究[D];山西大學(xué);2014年
4 趙婧;多夸克態(tài)研究[D];遼寧師范大學(xué);2008年
5 白利慧;五夸克態(tài)結(jié)構(gòu)[D];遼寧師范大學(xué);2009年
6 李昕;低溫高密的夸克物質(zhì)[D];四川大學(xué);2006年
7 孫薇;兩味中性非均勻配對(duì)態(tài)色超導(dǎo)夸克的研究[D];華中師范大學(xué);2007年
8 丁瑋;四夸克態(tài)質(zhì)量的相對(duì)論性夸克模型研究[D];西南大學(xué);2008年
9 張英麗;3P_0模型下研究三夸克和五夸克混合的重子[D];廣西師范大學(xué);2013年
10 莫莉瓊;運(yùn)用庫(kù)倫規(guī)范哈密頓量研究四夸克態(tài)[D];廣西師范大學(xué);2013年
本文編號(hào):2248935
本文鏈接:http://sikaile.net/shoufeilunwen/jckxbs/2248935.html