基于小環(huán)DNA的核酸自組裝技術
[Abstract]:DNA molecule is a ubiquitous molecule in nature and an important carrier for storing genetic information. In addition, DNA has been proved to be a powerful basic material for constructing nanostructures based on the formation of double-stranded structures by various mating methods. In 1982, American scientist Professor Seeman was subjected to biological recombination of Holiday Ju knot. Inspired by the idea that the first two-dimensional and three-dimensional DNA nanostructures were constructed using only coded base complementary pairings, marking the beginning of DNA nanotechnology. Researchers in this field have constructed static structures such as two-dimensional and three-dimensional nanolattices, nanotubes, polyhedrons and functional devices with arbitrary shapes, such as molecular machines and DNA computers, and are being used in nanomedicine, molecular electronics and other fields. In the research of DNA nanotechnology, rigid DNA modules are the basis of constructing nanostructures. Recently, our research group used enzymatic synthesis of small ring DNA instead of straight chain to construct linear array of DNA rigid modules to self-assemble DNA nanostructures. In this paper, we construct DNA tiles with different modes and connections based on small-loop DNA, and self-assemble DNA nanostructures with various morphologies. The main work is as follows: 1. We construct DNA tiles with small-loop DNA as the center and other linear DNA as the supplement. Then we use two commonly used designs, namely SAE (semi-crossover, anti-parallel, and even half-turns). In addition, with the help of physical in-phase and out-of-phase concepts, we have developed a modular self-assembly method for connecting DNA tiles at very short distances (11/16 bp). Two kinds of molecular modules, SAE-E (SAE-type DNA tiles, with even half-cycle connection distance between tiles) and DAE-O (DAE-type DNA tiles, with odd half-cycle connection distance between tiles), were synthesized. The experimental results show that we can self-assemble DNA nanotubes of uniform size with SAE-E design structure. The width is about 16-20 nm and the length is over 14 nm. The design structure of DAE-E can produce slim and long layers of structure. The patterns of wool-like clusters (25-30 nm wide), scarf-like nanosheets (100-300 nm wide) and nanoribbons (100-300 nm wide) are observed. In addition, the exciting assembly process, a gradual formation of nanosheets from disordered wool clusters, is also observed. Then, we speculate the bending of nanostructures according to the rotation direction of the small-ring DNA, and explain the formation mechanism of DNA nanotubes and wavy nanowires. 2. Using DAE-O design, we construct two-dimensional nanostructures with small-ring DNA as the core, in which DAE-O is Doublecrossover, Antiparallel, and Even half-turns tiles with Odd half-turns conne. We designed three kinds of small ring DNA (42 nt, 64 nt, 84 nt) to construct DAE. The experimental results showed that the DAE with 42 nt or 64 NT centered DNA strands (linear DNA or small ring DNA) could self-assemble into regular nanostructures. In the process of DNA self-assembly, the balance between flexibility and rigidity is very important, and 64 NT DNA has the best flexibility and rigidity. So tiles with 64 NT DNA have the best results; 84 NT DNA has the lowest stiffness, while 84 nt or longer linear DNA reduces stiffness and increases flexibility in building molecular tiles, which is not conducive to the formation of polycrystalline nanostructures. 3. A three-arm module is designed with 32 NT ring DNA as the center. A four-arm module is designed with 42 NT ring DNA as the center. A semi-crossed structure is used at the apex and a double helix and 26 BP connection distance are used at the junction. The lattice structure of hexagonal and quadrilateral small holes is observed after self-assembly, but not large. Three-arm structure self-assembles to form hexagonal pore structure, and has the tendency to extend to form honeycomb-like regular pattern. At present, we have obtained the structure, there are 3-5 regular pores in the horizontal direction, and the vertical continuous arrangement can be up to 10 or so, after section analysis of some structures, we can get the inner diameter of each pore as follows 23.4 nm, close to the theoretical estimate of the hexagon; most of the four-arm structure self-assembly lines, most of which are basically the same direction of growth lines, a few of which will form two or three structures together, lines 100-200 nm long, line width 20 nm, at the same time in the local can be found small 2 x 2 or 2 x 3 grid structure, the average diameter of 13.9 nm, close to The results of electrophoresis analysis show that we can successfully construct three-arm and four-arm structures, but other hybridization, mismatch by-products may affect the formation of the overall large structure, and a single double helix connection and small size ring DNA will make the overall structure lack of rigid binding, it is difficult to form large regular structure.
【學位授予單位】:南京大學
【學位級別】:博士
【學位授予年份】:2017
【分類號】:Q52
【相似文獻】
相關期刊論文 前10條
1 徐耀忠;Thiobase DNA: the chemistry and some applications in cancer studies[J];Progress in Natural Science;2000年06期
2 傅衍 ,牛冬 ,阮暉 ,陳海燕;COMPARISON OF DIFFERENT ENZYMES AND PROBES AND THEIR COMBINATIONS IN DNA FINGERPRINTING[J];Journal of Zhejiang University Science;2001年04期
3 安小惠 ,王一理 ,來寶長 ,耿一萍 ,司履生;CONSTRUCTION OF HUMAN INTERLUEKIN-18 DNA VACCINE AND IT'S EXPRESSION IN MAMMALIAN CELLS[J];Journal of Xi'an Medical University;2001年02期
4 張鵬 ,孟繼本 ,龍江 ,松浦輝男 ,王永梅;Synthesis of Benzo [α]phenoxazin-5-one Derivatives and Their Interactions with DNA[J];Chinese Journal of Chemistry;2002年05期
5 ;DIFFERENT RESULTS BY DIFFERENT COMMERCIAL TAQ DNA POLYMERASE IN RAPD[J];四川動物;2002年02期
6 ;Genetic Diversity of Three Aristichthys nobilis Populations and One Inbreeding Stock[J];Wuhan University Journal of Natural Sciences;2002年02期
7 強曉藝;DNA計算的應用與展望[J];西安聯(lián)合大學學報;2002年02期
8 王軍陽,范桂香,勝利,袁育康;THE CONSTRUCTION AND PRELIMINARY APPRAISEMENT OF HSV-2 gD GENE DNA VACCINE[J];Academic Journal of Xi'an Jiaotong University;2002年02期
9 董菁 ,成軍 ,王勤環(huán) ,施雙雙 ,王剛 ,斯崇文;CLONING AND ANALYSIS OF THE GENOMIC DNA SEQUENCE OF AUGMENTER OF LIVERR EGENERATION FROM RAT[J];Chinese Medical Sciences Journal;2002年02期
10 謝傳曉;Evidence for Base Substitutions and Repair of DNA Mismatch Damage Induced by Low Energy N~+ Ion Beam Implantation in E. coli[J];High Technology Letters;2003年02期
相關會議論文 前10條
1 Michael J.Siefkes;Cory O.Brant;Ronald B.Walter;;A novel real-time XL-PCR for DNA damage detection[A];漁業(yè)科技創(chuàng)新與發(fā)展方式轉變——2011年中國水產(chǎn)學會學術年會論文摘要集[C];2011年
2 ;Hormonal Regulation and Tumorigenic Role of DNA Methyltransferase[A];2011中國婦產(chǎn)科學術會議暨浙江省計劃生育與生殖醫(yī)學學術年會暨生殖健康講習班論文匯編[C];2011年
3 Dongmei Zhao;Fan Jin;Yuli Qian;Hefeng Huang;;Expression patterns of Dnmtl and Dnmt3b in preimplantational mouse embryos and effects of in-vitro cultures on their expression[A];中華醫(yī)學會第十次全國婦產(chǎn)科學術會議婦科內(nèi)分泌會場(婦科內(nèi)分泌學組、絕經(jīng)學組、計劃生育學組)論文匯編[C];2012年
4 姜東成;蔣稼歡;楊力;蔡紹皙;K.-L.Paul Sung;;在聚吡咯微點致動下的DNA雜交行為[A];2008年全國生物流變學與生物力學學術會議論文摘要集[C];2008年
5 白明慧;翁小成;周翔;;聯(lián)鄰苯二酚類小分子作為DNA交聯(lián)劑的研究[A];第六屆全國化學生物學學術會議論文摘要集[C];2009年
6 張曄;杜智;楊斌;高英堂;;檢測外周血中游離DNA的應用前景(綜述)[A];天津市生物醫(yī)學工程學會第29屆學術年會暨首屆生物醫(yī)學工程前沿科學研討會論文集[C];2009年
7 周紅;鄭江;王良喜;丁國富;魯永玲;潘文東;羅平;肖光夏;;CpG DNA誘導全身炎癥反應綜合征的作用及其機制研究[A];全國燒傷創(chuàng)面處理、感染專題研討會論文匯編[C];2004年
8 ;EFFECTS OF Ku70-DEFICIENT ON ARSENITE-INDUCED DNA DOUBLE STRAND BREAKS, CHROMOSOMAL ALTERATIONS AND CELL CYCLE ARREST[A];海峽兩岸第三屆毒理學研討會論文摘要[C];2005年
9 李經(jīng)建;冀中華;蔡生民;;小溝結合方式中的DNA媒介電荷轉移[A];第十三次全國電化學會議論文摘要集(下集)[C];2005年
10 ;The interaction between Levofloxacine Hydrochloride and DNA mediated by Cu~(2+)[A];湖北省化學化工學會2006年年會暨循環(huán)經(jīng)濟專家論壇論文集[C];2006年
相關重要報紙文章 前10條
1 本報記者 袁滿;平安:把“領先”作為DNA[N];經(jīng)濟觀察報;2006年
2 舒放;編織一個DNA納米桶[N];醫(yī)藥經(jīng)濟報;2006年
3 閆潔;英兩無罪公民起訴要求銷毀DNA記錄[N];新華每日電訊;2008年
4 何德功;日本制成診斷魚病的“DNA書”[N];農(nóng)民日報;2004年
5 本報記者 張巍巍;DNA樣本也能作假[N];科技日報;2009年
6 周斌偉 鄒巍;蘇州警方應用DNA技術一年偵破案件1887起[N];人民公安報;2011年
7 本報記者 楊天笑;揭秘“神探”DNA[N];蘇州日報;2011年
8 第四軍醫(yī)大學基礎醫(yī)學部生物化學與分子生物學教研室教授 李福洋;破除法老DNA的咒語[N];東方早報;2011年
9 常麗君;DNA電路可檢測導致疾病的基因損傷[N];科技日報;2012年
10 常麗君;效率和質量:“DNA制造業(yè)”兩大障礙被攻克[N];科技日報;2012年
相關博士學位論文 前10條
1 唐陽;基于質譜技術的基因組DNA甲基化及其氧化衍生物分析[D];武漢大學;2014年
2 池晴佳;DNA動力學與彈性性質研究[D];重慶大學;2015年
3 胡璐璐;哺乳動物DNA去甲基化過程關鍵酶TET2的三維結構與P暬蒲芯縖D];復旦大學;2014年
4 馬寅洲;基于滾環(huán)擴增的DNA自組裝技術的研究[D];南京大學;2014年
5 黃學鋒;精子DNA碎片的臨床意義:臨床和實驗研究[D];復旦大學;2013年
6 隋江東;APE1促進DNA-PKcs介導hnRNPA1磷酸化及其在有絲分裂期端粒保護中的作用[D];第三軍醫(yī)大學;2015年
7 劉松柏;結構特異性核酸酶FEN1在DNA復制及細胞周期過程中的功能性研究[D];浙江大學;2015年
8 王璐;哺乳動物中親本DNA甲基化的重編程與繼承[D];中國科學院北京基因組研究所;2015年
9 齊文靖;染色質改構蛋白BRG1在DNA雙鏈斷裂修復中的作用及機制研究[D];東北師范大學;2015年
10 龍湍;水稻T-DNA插入突變?nèi)后w側翼序列的分離分析和OsaTRZ2的克隆與功能鑒定[D];華中農(nóng)業(yè)大學;2014年
相關碩士學位論文 前10條
1 董洪奎;面向可視化納米操作的DNA運動學建模及誤差實時校正方法[D];沈陽理工大學;2014年
2 聞金燕;水溶性羧基和吡啶基咔咯大環(huán)與DNA和人血清蛋白的相互作用[D];華南理工大學;2015年
3 江懌雨;水溶性羧酸卟啉及其配合物與DNA和人血清蛋白的相互作用[D];華南理工大學;2015年
4 高志森;比較外周游離循環(huán)腫瘤DNA與癌胚抗原監(jiān)測非小細胞肺癌根治術前后腫瘤負荷變化的初步研究[D];福建醫(yī)科大學;2015年
5 丁浩;血漿循環(huán)DNA完整性及多基因甲基化對肺癌診斷價值的研究[D];河北大學;2015年
6 王鵬;基于碳點@氧化石墨烯復合材料DNA生物傳感器的構建及用于PML/RARα基因檢測[D];福建醫(yī)科大學;2015年
7 李海青;轉堿篷和鹽角草總DNA的耐鹽紫花苜蓿的選育[D];內(nèi)蒙古大學;2015年
8 李婷婷;小鼠DNA模式識別重要受體的分子結構特征及其功能研究[D];中國農(nóng)業(yè)科學院;2015年
9 劉瑞斯;抗癌藥物奧沙利鉑與DNA相互作用的原子力顯微鏡觀察研究[D];東北林業(yè)大學;2015年
10 熊忠;芳香二肽與一價金屬離子間相互作用及DNA切割活性的研究[D];鄭州大學;2015年
,本文編號:2247339
本文鏈接:http://sikaile.net/shoufeilunwen/jckxbs/2247339.html