趨化模型的自由邊值問題以及分?jǐn)?shù)階趨化模型的研究
[Abstract]:In this paper, we mainly discuss the existence theory of solution of chemotaxis system formed by a class of partial differential equations in biological mathematics. This paper is divided into four parts. In the first chapter, we first review the biological background and Keller-Segel model, the history of free boundary value problems, and then summarize some research status. Finally, based on the above facts, we give the main results of this paper. The second part includes the second, third and fourth chapters. We consider the free boundary value problem of three kinds of chemotaxis models, which are parabolic ellipse, complete parabola and parabolic hyperbolic respectively. In the second and third chapters, we introduce the variable coefficient equation satisfied by the free boundary in the high dimensional radial symmetric region. By using the contraction mapping principle and the estimation of the elliptic and parabolic equations, we consider the parabolic ellipse respectively. Existence of solutions for two classes of completely parabolic chemotactic models. In chapter 4, we first consider the parabolic hyperbolic model with fixed boundary of one-dimensional interval, and obtain the existence of solutions for this kind of chemotaxis model. Then we introduce the variable coefficient equation satisfied by the free boundary and obtain the existence of the solution of the free boundary value problem by using the contraction mapping principle and the estimates of the parabolic and hyperbolic equations. In the third part, we discuss the existence of fractional order chemotaxis model in Sobolev space and Besov space respectively. In chapter 5, according to the difference of initial values, we consider the existence of solutions of fractional order chemotaxis in corresponding Sobolev spaces by means of the contraction mapping principle and the construction of approximate solution sequences. In chapter 6, we obtain the existence of solutions of fractional chemotaxis model in Besov space by using the method of constructing approximate solution sequence. In the fourth part, chapter 7, we make some further research prospects on the chemotaxis model.
【學(xué)位授予單位】:武漢大學(xué)
【學(xué)位級(jí)別】:博士
【學(xué)位授予年份】:2016
【分類號(hào)】:O175.8
【相似文獻(xiàn)】
相關(guān)期刊論文 前10條
1 譚啟建;;關(guān)于確定自由邊值問題系數(shù)k的一類反問題[J];四川師范大學(xué)學(xué)報(bào)(自然科學(xué)版);2007年04期
2 戰(zhàn)同勝;水壩滲流自由邊值問題的解法[J];計(jì)算物理;1992年04期
3 趙偉霞;;關(guān)于剝脫現(xiàn)象的自由邊值問題的研究[J];數(shù)學(xué)物理學(xué)報(bào);2011年06期
4 李艷妮;;液體-氣體兩相流模型自由邊值問題的漸近狀態(tài)[J];紡織高校基礎(chǔ)科學(xué)學(xué)報(bào);2012年01期
5 簡(jiǎn)懷玉;一類自由邊值問題解的穩(wěn)定性[J];懷化師專學(xué)報(bào)(自然科學(xué)版);1987年05期
6 李作發(fā);各種形式的多體時(shí)空大地測(cè)量邊值問題及其解[J];武漢測(cè)繪科技大學(xué)學(xué)報(bào);1990年04期
7 羅遠(yuǎn)詮,李凱;孔口水流自由邊值問題的一種數(shù)值解法[J];大連理工大學(xué)學(xué)報(bào);1991年03期
8 戰(zhàn)同勝,羅遠(yuǎn)詮;壩體滲流自由邊值問題的一個(gè)解法[J];數(shù)學(xué)研究與評(píng)論;1991年04期
9 譚啟建;冷忠建;;一類退縮非線性自由邊值問題弱解的存在唯一性[J];數(shù)學(xué)雜志;2006年06期
10 吳仕先;用變分不等式-截?cái)喾椒ㄇ蟮叵滤械淖杂蛇呏祮栴}的數(shù)值解[J];水文地質(zhì)工程地質(zhì);1980年05期
相關(guān)博士學(xué)位論文 前2條
1 呂文斌;趨化模型的自由邊值問題以及分?jǐn)?shù)階趨化模型的研究[D];武漢大學(xué);2016年
2 趙偉霞;對(duì)流體力學(xué)和材料科學(xué)中若干自由邊值問題的研究[D];復(fù)旦大學(xué);2013年
相關(guān)碩士學(xué)位論文 前8條
1 趙偉霞;關(guān)于剝脫現(xiàn)象的自由邊值問題的研究[D];復(fù)旦大學(xué);2010年
2 王曉瑾;一維粘性系數(shù)依賴于密度的非等熵Navier-Stokes方程自由邊值問題[D];西北大學(xué);2016年
3 鄭丹;一維等熵可壓Navier-Stokes方程自由邊值問題經(jīng)典解的存在性及漸近性態(tài)[D];西北大學(xué);2016年
4 張華;細(xì)胞模型自由邊值問題的分歧[D];西北大學(xué);2008年
5 郭慧玲;一維粘性液體—?dú)怏w兩相流模型自由邊值問題[D];西北大學(xué);2012年
6 宋紅麗;一維可壓Navier-Stokes方程自由邊值問題全局強(qiáng)解存在性和解的邊界行為[D];西北大學(xué);2013年
7 胡愛蓮;一類非線性橢圓方程自由邊值問題徑向解的存在性[D];華中師范大學(xué);2006年
8 劉偉明;擾動(dòng)方法研究R~3中自由邊值問題[D];華中師范大學(xué);2011年
,本文編號(hào):2224547
本文鏈接:http://sikaile.net/shoufeilunwen/jckxbs/2224547.html