BCAS2在小鼠精子發(fā)生中的功能和機(jī)制研究
[Abstract]:Spermatogenesis is a very dynamic and complex process, which mainly goes through three stages: spermatogonia mitosis, spermatogonial meiosis and sperm cell deformation, resulting in haploid long spermatozoa. Every stage of spermatogenesis requires precise regulation of gene expression. As a very important gene post-transcriptional regulation, variable splicing greatly increases the diversity of transcription and translation products in higher eukaryotes and complex organs. Numerous studies have shown that variable splicing regulates the expression and function of genes associated with spermatogenesis. In addition, many splicing factors present cellular or developmental specific expression patterns in the testis. These results suggest that variable splicing may play an important role in the regulation of spermatogenesis. BCAS2 (breast carcinoma amplified sequence 2) is the core component of Prp19 related complex and participates in important life activities such as splicing of precursor RNA. Our previous study found that BCAS2 has a specific expression pattern in male germ cells. In this study, the mouse model of spermatogonial stem cell knockout BCAS2 was used to study whether BCAS2 was involved in the splicing of spermatogenesis. Through the immunostaining of BCAS2 during testicular development and the enrichment of spermatogenic cells, it was found that the expression of BCAS2 in spermatogonial stem cells of mouse testis was relatively high. Vasa-Cre mediated germ cell specific knockout of BCAS2 in male mice. It was found that the deletion of BCAS2 resulted in abnormal spermatozoa, which showed that the number of germ cells in the early stage of the first meiosis was significantly down-regulated. The key events of meiosis (recombination and association) were not observed. The number, location, proliferation and apoptosis of spermatogonial stem cells were detected by staining and statistics. It was found that the spermatogonial stem cells in the testis with BCAS2 deletion developed normally, but a large number of spermatocytes were absent in the early stage of the first meiosis. The expression of STRA8, a key factor in meiosis initiation, was also down-regulated, indicating that the testis with BCAS2 deletion could not initiate meiosis normally. In order to further elucidate the mechanism of BCAS2, RNA deep sequencing of normal and BCAS2 knockout testis of mice on the 9th day after birth (P9) was carried out. The results showed that the gene expression of testicular transcriptome without BCAS2 was basically normal. But the expression of tubulin, the target gene of splicing, changed obviously, suggesting that BCAS2 may play a role in splicing. In order to study the function of BCAS2 in pre-mRNA splicing, we further studied the change of variable splicing in BCAS2 missing testis. The results showed that the variable splicing of 245 genes was abnormal in the testis with BCAS2 deletion, including 6 genes (Dazll Ehmt2, Hmga1Hmga1), which played an important role in spermatogenesis. Using semi-quantitative RT-PCR and real-time RT-PCR, we have successfully verified the variable splicing anomalies of Dazln Ehmt2 and Hmga1. In addition, the deletion of BCAS2 resulted in abnormal expression of DAZL transcripts: the full-length transcripts were significantly down-regulated, while the expression of deletion exon 8 was significantly increased. Moreover, the total expression of DAZL protein was significantly down-regulated. In conclusion, this study demonstrated that BCAS2 was involved in the variable splicing of mouse spermatogonial stem cells, and was essential to the initiation of meiosis and the maintenance of male fertility. This study revealed for the first time the important event of variable splicing regulating the initiation of meiosis during spermatogenesis, and provided a new idea for studying the initiation of mammalian meiosis. It also provides an important theoretical basis for the study of the physiological function of variable splicing.
【學(xué)位授予單位】:中國科學(xué)技術(shù)大學(xué)
【學(xué)位級別】:博士
【學(xué)位授予年份】:2017
【分類號】:Q132.1
【相似文獻(xiàn)】
相關(guān)期刊論文 前10條
1 黃朝暉,王金福;可變剪接與細(xì)胞凋亡調(diào)控[J];生命的化學(xué);2000年04期
2 陳學(xué)平,武耀廷,郭家明,張成,馬飛;人類1號染色體可變剪接與普通剪接基因同義密碼子的使用分析 I.同義密碼子偏愛使用分析(英文)[J];安徽農(nóng)業(yè)大學(xué)學(xué)報(bào);2004年01期
3 李稚鋒,王正志,張成崗;真核基因可變剪接研究現(xiàn)狀與展望[J];生物信息學(xué);2004年02期
4 彭正羽;張薇;陳獻(xiàn)華;徐平;;神經(jīng)膠質(zhì)瘤中前體mRNA可變剪接研究進(jìn)展[J];生物化學(xué)與生物物理進(jìn)展;2007年10期
5 杭興宜;鄧明華;孫志賢;張成崗;;外顯子芯片的數(shù)據(jù)分析和可變剪接預(yù)測的新算法[J];軍事醫(yī)學(xué)科學(xué)院院刊;2009年05期
6 王科俊;呂俊杰;馮偉興;王鑫;;可變剪接與疾病的生物信息學(xué)研究概況[J];生命科學(xué)研究;2011年01期
7 章天驕;;可變剪接的生物信息數(shù)據(jù)分析綜述[J];生物信息學(xué);2012年01期
8 高亞梅;韓毅強(qiáng);;癌癥與可變剪接[J];生物技術(shù)通訊;2007年06期
9 邢永強(qiáng);張利絨;羅遼復(fù);陳偉;;老鼠基因組盒式外顯子和內(nèi)含子保留型可變剪接位點(diǎn)預(yù)測[J];內(nèi)蒙古大學(xué)學(xué)報(bào)(自然科學(xué)版);2009年05期
10 蔣琰;惠靜毅;;染色質(zhì)結(jié)構(gòu)與mRNA可變剪接[J];生命的化學(xué);2014年04期
相關(guān)會(huì)議論文 前5條
1 張繼業(yè);任長虹;龐劍會(huì);趙娜;劉虎岐;張成崗;;可變剪接在缺氧應(yīng)答中的調(diào)控作用[A];Proceedings of the 8th Biennial Conference of the Chinese Society for Neuroscience[C];2009年
2 周春燕;張朵;張曉;富顯果;廖娟;蘭風(fēng)華;;人eIF2B4基因一個(gè)新型可變剪接產(chǎn)物及其鑒定[A];中國的遺傳學(xué)研究——遺傳學(xué)進(jìn)步推動(dòng)中國西部經(jīng)濟(jì)與社會(huì)發(fā)展——2011年中國遺傳學(xué)會(huì)大會(huì)論文摘要匯編[C];2011年
3 肖銳;孫濤;吳同彬;魏然;卓曉宇;付向東;張翼;;大規(guī)模RNA干擾篩選具有可變剪接調(diào)控蛋白[A];湖北省暨武漢市生物化學(xué)與分子生物學(xué)學(xué)會(huì)第八屆第十七次學(xué)術(shù)年會(huì)論文匯編[C];2007年
4 富顯果;廖娟;郭小燕;嚴(yán)愛貞;張朵;鄭德柱;蘭風(fēng)華;;FMR1基因的可變剪接及其意義[A];第九屆全國遺傳病診斷與產(chǎn)前診斷學(xué)術(shù)交流會(huì)暨產(chǎn)前診斷和醫(yī)學(xué)遺傳學(xué)新技術(shù)研討會(huì)論文集[C];2014年
5 黃正洋;陳陽;李欣鈺;甄霆;張揚(yáng);徐琪;趙文明;陳國宏;;鴨TLR4基因可變剪接體的克隆、鑒定及組織表達(dá)分析[A];中國畜牧獸醫(yī)學(xué)會(huì)家禽學(xué)分會(huì)第九次代表會(huì)議暨第十六次全國家禽學(xué)術(shù)討論會(huì)論文集[C];2013年
相關(guān)博士學(xué)位論文 前10條
1 富顯果;FMR1基因的可變剪接及其意義[D];福建醫(yī)科大學(xué);2014年
2 李龍;毛竹筍生長時(shí)空變化規(guī)律和生長素相關(guān)基因分析[D];中國林業(yè)科學(xué)研究院;2016年
3 劉文博;BCAS2在小鼠精子發(fā)生中的功能和機(jī)制研究[D];中國科學(xué)技術(shù)大學(xué);2017年
4 諸葛堅(jiān);細(xì)胞色素P450 2D6和2C18的可變剪接研究[D];浙江大學(xué);2003年
5 呂俊杰;采用智能方法的可變剪接調(diào)控機(jī)制與相關(guān)疾病研究[D];哈爾濱工程大學(xué);2012年
6 武鵬;肝臟不同類型細(xì)胞基因表達(dá)及可變剪接的研究[D];中國人民解放軍軍事醫(yī)學(xué)科學(xué)院;2014年
7 劉舒云;小鼠基因sidt2的可變剪接研究及功能初步探討[D];中國人民解放軍軍事醫(yī)學(xué)科學(xué)院;2008年
8 徐佳熹;基于比較基因組學(xué)和mRNA高通量測序的可變剪接外顯子進(jìn)化研究[D];復(fù)旦大學(xué);2011年
9 詹雷雷;RNA互斥可變剪接的進(jìn)化和調(diào)控機(jī)制的研究[D];浙江大學(xué);2011年
10 杭興宜;利用外顯子芯片研究缺血/缺氧損傷相關(guān)的剪接調(diào)控機(jī)制[D];中國人民解放軍軍事醫(yī)學(xué)科學(xué)院;2009年
相關(guān)碩士學(xué)位論文 前10條
1 胡興;基于最優(yōu)搜索的基因可變剪接的預(yù)測[D];電子科技大學(xué);2008年
2 章天驕;基因組可變剪接特征分析與預(yù)測[D];哈爾濱工業(yè)大學(xué);2011年
3 曹新茹;家蠅鐵蛋白基因的克隆、表達(dá)及功能分析[D];河北大學(xué);2015年
4 戴嵐芝;果蠅CG30427 mRNA前體3'端互斥可變剪接的調(diào)控機(jī)制研究[D];浙江大學(xué);2015年
5 劉陽;擬南芥形態(tài)和生理進(jìn)化的比較研究[D];山東農(nóng)業(yè)大學(xué);2015年
6 張珊珊;基于RNA-Seq數(shù)據(jù)的小鼠神經(jīng)發(fā)育中可變剪接的研究[D];南京航空航天大學(xué);2015年
7 楊海龍;玉米穗部低氮響應(yīng)可變剪接的鑒定[D];中國農(nóng)業(yè)科學(xué)院;2015年
8 周志強(qiáng);Mstn基因敲除大鼠模型的建立及表型的初步分析Fkbp51基因敲除對小鼠肝臟轉(zhuǎn)錄組基因可變剪接的影響[D];北京協(xié)和醫(yī)學(xué)院;2016年
9 李春曉;腫瘤轉(zhuǎn)移相關(guān)基因1(MTA1)對mRNA可變剪接調(diào)控的作用研究[D];北京協(xié)和醫(yī)學(xué)院;2016年
10 李慧;HuR通過拮抗內(nèi)含子中嘧啶富集區(qū)的作用調(diào)節(jié)WT1+/-KTS亞型的可變剪接[D];大連醫(yī)科大學(xué);2016年
,本文編號:2186418
本文鏈接:http://sikaile.net/shoufeilunwen/jckxbs/2186418.html