天堂国产午夜亚洲专区-少妇人妻综合久久蜜臀-国产成人户外露出视频在线-国产91传媒一区二区三区

日冕磁繩的災變及相關現象研究

發(fā)布時間:2018-08-08 13:59
【摘要】:太陽大尺度爆發(fā)活動是日地空間活動的主要擾動源,主要包括日珥(暗條)爆發(fā)、耀斑和日冕物質拋射等現象。這些爆發(fā)活動彼此之間并非獨立,它們通常被認為是同一個日冕磁繩爆發(fā)活動在不同的時間范圍和空間區(qū)域內的具體表現形式。研究日冕磁繩爆發(fā)的現象和機制,對于理解這些爆發(fā)現象的物理過程,促進空間天氣預報的發(fā)展有重要意義。本文主要研究的是日冕磁繩爆發(fā)的災變驅動機制,以及與之相關的觀測現象的分析。首先,我們利用數值模擬的方法,研究了日冕磁繩系統的災變特性,包括不同光球層磁通分布下系統災變演化特性的差異,以及日冕磁繩系統中存在的不同類型的災變現象等等;然后,我們研究了衛(wèi)星觀測到的一個典型的太陽爆發(fā)活動事件,分析了其中的動力學演化過程,以及爆發(fā)活動的驅動機制,并在此基礎上,與數值模擬中的得到的磁繩的災變演化特性進行對比分析,從而對這個爆發(fā)活動的演化過程給出一個系統完整的描述;此外,我們還研究了太陽爆發(fā)活動所驅動的波和振動現象,利用振動參數,估算局地物理參數并分析波的相關物理性質。1.日冕磁繩系統的災變特性在現有的觀測條件下,日冕中的磁場位形無法直接測量,只有光球層的磁通分布可以直接觀測到。因此我們嘗試利用數值模擬,研究光球層磁場條件與日冕磁繩系統災變特性之間的關系,以期能夠為太陽爆發(fā)活動的預報工作給出理論上的依據。通過計算發(fā)現,系統的向上災變特性與光球層磁通分布有著密切的聯系:如果光球層活動區(qū)的正負極性靠得過近,或是正負極性對應的源區(qū)過弱,都會造成磁繩系統中不會發(fā)生向上災變,即在這種光球層磁通分布下,磁繩系統不會爆發(fā)。我們對部分開放場和全閉合背景場的情況都進行了計算分析,發(fā)現磁繩系統均滿足類似的結論,這表明背景場的開放性不是決定系統是否存在災變的唯一因素,任何會改變背景場位形的參數都有可能影響系統的災變特性。同時,通過詳細分析有災變的情況,我們還發(fā)現災變演化過程的激烈程度同樣受光球層磁場條件的影響:正負極性距離越大,源區(qū)越強,系統的演化過程越激烈,即磁繩系統的活動性越強。在以往的研究中,分析的都是向上災變的演化過程。通過數值模擬計算,我們發(fā)現,除了以往被廣泛研究的向上災變以外,日冕磁繩系統中還存在一個磁繩向下運動的災變,被稱為向下災變。向下災變的過程中,即使系統中不存在磁場重聯,磁能同樣會被釋放。在這種情況下,系統主要通過洛倫茲力的做功來釋放磁能,且其量級與太陽爆發(fā)事件釋放能量的典型值相當。因此,洛倫茲力在災變中起到了重要的作用。在此基礎上,我們進一步研究了光球層磁通分布對向下災變的影響,結果發(fā)現了類似的結果..只有當磁通分布滿足特定條件,系統中才會發(fā)生向下災變。值得注意的是,在研究中發(fā)現,向上災變和向下災變總是伴隨出現,即系統存在向上災變或是向下災變時,需要滿足光球層磁通分布相同。2.通量注入過程引起爆發(fā)活動現象的觀測分析通過對一個爆發(fā)日珥事件的觀測分析,我們發(fā)現在日珥爆發(fā)之前的兩天時間內,發(fā)生了至少三次通量注入過程:來自色球層的纖維狀物質上浮,與上方的日珥相互作用并最終融合在一起。這種通量注入過程會通過色球纖維結構向日珥中注入磁通量,從而引起日珥緩慢抬升速度的明顯增加,并最終爆發(fā)形成日冕物質拋射。通過分析外部磁場隨高度的衰減,我們發(fā)現正是由于通量注入過程,使得日珥上升到外部磁場衰減足夠快的高度,于是系統發(fā)生了 torus不穩(wěn)定性從而導致了日珥的爆發(fā)。因此,通量注入過程就是這個日珥爆發(fā)事件的驅動原因。通過與數值模擬中得到的日冕磁繩系統災變演化特性的對比分析,我們發(fā)現,正是通量注入過程不斷的將磁通量注入了日珥所在的磁繩系統,使得系統逐漸演化到所對應的災變點,于是系統失衡產生災變。由于災變點恰好就是torus不穩(wěn)定性發(fā)生的臨界狀態(tài),因此災變的具體演化過程表現為torus不穩(wěn)定性。3.太陽爆發(fā)活動產生的波和振動現象的分析太陽的爆發(fā)活動還會引起許多其他的觀測現象。我們研究了一個大尺度EUV波事件,它是由一個耀斑產生的日冕物質拋射所驅動的。EUV波在傳播的過程中,與傳播路徑上的冕環(huán)和日珥相互作用,驅動冕環(huán)和日珥開始振動。通過分析觀測數據,我們得到了冕環(huán)和日珥的相關物理參數。利用這些參數,我們估算了太陽表面振動結構所處區(qū)域的局地物理參數。同時,結合冕環(huán)和日珥的空間位置信息,我們還估算了 EUV波的傳播高度以及波的總能量。
[Abstract]:The solar large-scale eruption is the main disturbance source of the solar terrestrial space activities, mainly including the eruptions of prominence (dark strips), flares and coronal mass ejections. These eruptions are not independent of each other. They are usually considered to be the specific manifestations of the same coronal magnetic rope eruption in the different time range and space area. The study of the phenomenon and mechanism of the coronal magnetic rope burst is of great significance for understanding the physical process of these eruptions and promoting the development of the space weather forecast. This paper mainly deals with the catastrophic driving mechanism of the coronal magnetic rope burst and the analysis of the observed phenomena related to it. First, we have studied the method of numerical simulation. The catastrophic characteristics of the coronal magnetic rope system include the difference in the characteristics of the system catastrophe and the different types of catastrophic phenomena in the coronal magnetic rope system, as well as the different types of catastrophes in the coronal magnetic rope system, and so on. Then, we have studied a typical solar explosion event observed by the satellite, and analyzed its dynamic evolution process. And on this basis, and on this basis, compared with the characteristics of the catastrophic evolution of the magnetic cord in the numerical simulation, a systematic and complete description of the evolution process of the eruption activity is given. In addition, we also study the wave and vibration phenomena driven by the solar explosion, and use the vibration parameters to estimate. The local physical parameters and the analysis of the related physical properties of the wave.1. coronal magnetic rope system, the characteristics of the coronal magnetic rope system can not be measured directly in the current corona, only the magnetic flux distribution in the sphere can be observed directly. Therefore, we try to use the numerical simulation to study the magnetic field conditions of the sphere and the coronal magnetic rope system. The relationship between the characteristics of the catastrophe is expected to provide a theoretical basis for the prediction of the solar eruption. It is found that the upward catastrophic characteristics of the system are closely related to the flux distribution of the photosphere: if the positive and negative polarity of the sphere of the sphere is too close, or the source area corresponding to the positive and negative polarity is too weak, it will all be caused. There will not be an upward catastrophe in the magnetic rope system, that is, the magnetic rope system will not break out under the flux distribution of the sphere layer. We have calculated and analyzed the conditions of the partial open field and the fully closed background field. It is found that the magnetic rope system satisfies the similar conclusion, which indicates that the opening of the background field is not the only one to determine whether the system has a catastrophe or not. At the same time, we also find that the severity of the catastrophic process is also affected by the magnetic field conditions of the photosphere: the greater the distance between the positive and negative polarity, the stronger the source area, the more intense the evolution of the system, the magnetic rope system. The more active the system is. In previous studies, the analysis is the evolutionary process of the upward catastrophe. Through numerical simulation, we find that there is a magnetic rope downward movement in the coronal rope system besides the previously widely studied upward catastrophes, which is called downward catastrophe. In the process of downward catastrophe, even the system is in the process. There is no magnetic reconnection, and the magnetic energy is also released. In this case, the system releases the magnetic energy mainly through the work of the Lorenz force, and its magnitude is equivalent to the typical value of the energy released by the solar eruption event. Therefore, Lorenz force plays an important role in the catastrophe. On this basis, we further study the magnetic flux of the photosphere. The effect of distribution on the downward catastrophe has been found. The downward catastrophe occurs only when the flux distribution satisfies specific conditions. It is noted that in the study, it is found that the upward and downward catastrophes always accompany the system, that is, the system needs to meet the flux of the photosphere when there is a catastrophic or downward catastrophe. Observation and analysis of the phenomenon of explosive activity caused by the same.2. flux injection process, we found that at least three times of flux injection process in two days before the prominence eruption: the fibrous material from the chromosphere layer, interacting with the prominence above and finally fusion. Together, the flux injection process will inject magnetic flux into the solar prominence through the structure of the chromosphere, causing a significant increase in the slow lifting speed of the prominence and eventually forming a coronal mass ejection. By analyzing the attenuation of the external magnetic field with the height, we find that the prominence is rising to the external magnetic flux because of the flux injection process. The field attenuates a high enough height, so the system has torus instability which leads to the eruption of the prominence. Therefore, the flux injection process is the driving cause of the event of the prominence. By the comparison of the catastrophic characteristics of the coronal cord system obtained in the numerical simulation, we find that it is the flux injection process. The magnetic flux is injected into the magnetic rope system where the prominence is located, so that the system gradually evolves to the corresponding catastrophe, so the system imbalance produces the catastrophe. Because the catastrophic point is the critical state of the torus instability, the concrete evolution of the catastrophe is manifested by the waves and vibrations produced by the torus instability.3. solar explosion. The phenomenal analysis of the solar explosion will also cause many other observational phenomena. We have studied a large scale EUV wave event, which is a.EUV wave driven by a coronal mass ejection produced by a flare, interacting with the coronal rings and prominences on the propagation path, driving the vibration of the coronal rings and prominences. By analyzing the observation data, we get the physical parameters of the coronal ring and prominence. By using these parameters, we estimate the local physical parameters in the region of the vibration structure of the solar surface. At the same time, we also estimate the propagation height of the EUV wave and the total energy of the wave in conjunction with the spatial position information of the coronal ring and the prominence.
【學位授予單位】:中國科學技術大學
【學位級別】:博士
【學位授予年份】:2017
【分類號】:P182.62

【相似文獻】

相關期刊論文 前10條

1 胡文瑞;日冕環(huán)和日冕拱的平衡位形[J];空間科學學報;1982年01期

2 葉占銀,魏奉思,王赤,羅慶宇,馮學尚;扭轉Alfvén波共振的數學描述[J];空間科學學報;2003年04期

3 譚寶林;黃光力;;冕環(huán)電流的成因分析[J];天文研究與技術.國家天文臺臺刊;2006年02期

4 張真;何馨;梁紅飛;;冕環(huán)振蕩的物理特征研究[J];天文學報;2013年01期

5 劉新萍;太陽日冕環(huán)的運動(Ⅰ)、(Ⅱ)[J];云南天文臺臺刊;1981年Z1期

6 劉新萍;太陽日冕環(huán)的運動[J];Chinese Journal of Astronomy and Astrophysics;1982年03期

7 劉新萍;太陽日冕環(huán)的運動(二)[J];Chinese Journal of Astronomy and Astrophysics;1983年01期

8 章振大;R.N.Smartt;;冕環(huán)的相互作用[J];天文學報;1991年03期

9 封莉,甘為群;太陽活動區(qū)冕環(huán)若干研究進展[J];天文學進展;2005年03期

10 李海東;趙麗;梁紅飛;畢以;洪俊超;鄭瑞生;;慢磁聲波在黑子上方冕環(huán)中的傳播[J];天文學報;2013年01期

相關會議論文 前1條

1 宋文彬;;不同螺度冕環(huán)相互作用引發(fā)的太陽爆發(fā)事件[A];中國地球物理學會第二十四屆年會論文集[C];2008年

相關博士學位論文 前2條

1 張全浩;日冕磁繩的災變及相關現象研究[D];中國科學技術大學;2017年

2 羅慶宇;太陽日冕波動加熱機制研究[D];中國科學院研究生院(空間科學與應用研究中心);2003年

相關碩士學位論文 前2條

1 歐陽文輝;激波及其擾動引起的冕拱振動頻率研究[D];云南師范大學;2015年

2 趙燕;基于相位一致性和方向濾波的冕環(huán)特征識別方法[D];昆明理工大學;2016年

,

本文編號:2172007

資料下載
論文發(fā)表

本文鏈接:http://sikaile.net/shoufeilunwen/jckxbs/2172007.html


Copyright(c)文論論文網All Rights Reserved | 網站地圖 |

版權申明:資料由用戶0e761***提供,本站僅收錄摘要或目錄,作者需要刪除請E-mail郵箱bigeng88@qq.com