基于RNA-seq的叢枝菌根真菌Gigaspora rosea基因構(gòu)成及其共生發(fā)育相關(guān)基因的分析
[Abstract]:Arbuscular mycorrhizal fungi (AMF) can form a unique mutualistic symbiotic with most of the roots of the earth - Arbuscular mycorrhiza (AM).AM can significantly improve the nutrition, water metabolism and resistance of the host plant. Therefore, it is of great significance to modern sustainable agriculture. The biological and genetic complexity of the specific living body (Obligate biotrophy) organisms greatly restricts the study of molecular biological mechanisms for its development. Although the publication of the model Rhizophagus irregularis data has opened the first door to our understanding of the complete picture of the genetic composition of AMF, AMF is an independent one. The ancient fungal evolutionary branch (Glomeromycota), which contains rich genetic diversity and ecophysiological diversity, is not yet known whether the characteristics of the R.irregularis group data represent the general characteristics of the whole AMF group. In order to understand the characteristics of the AMF genetic composition and explore it more comprehensively The molecular biological mechanism of symbiotic development, this study selects a mycorrhizal fungal species, Gigaspora rosea (Diversisporales), which has significant differences in genetic and physiological characteristics with the pattern species R.irregularis (Glomerales) as the research object, using two generation nucleic acid sequencing technology (RNA-sequencing) and related bioinformatics analysis techniques. The main results are as follows: 1. in view of the physiological characteristics of G.rosea, this study optimizes the relevant experimental methods and uses these methods to successfully prepare high quality and high throughput sequencing nuclear acid (RNA) samples representing various typical developmental stages and overcome the previous AMF molecular biology research. In particular, the problem of insufficient AMF nucleic acid content and poor quality that existed in large-scale omics research,.2. uses CLC genomics workbench software to classify read segment sequence (reads) and splice (de novo assembly) from high throughput sequencing (de novo assembly), and obtains 86332 non redundant G.rosea virtual transcriptional sequences, the average length 643bp. passes through. Compared with the Refseq protein database, only 15346 transcripts can be annotated into a known gene in the database, indicating a large number of family specific orphan genes in AMF (Lineage-specific orphan genes). Protein functional annotations (GO and KOG) and comparison with other different groups of fungi show that a large number of letters have been enriched in AMF. Signal transduction related genes, which suggest that their interaction with host plants may involve intensive signal exchange processes. The results of the global metabolic pathway (KEGG) analysis show that AMF still retain most of the primary metabolic genes, and the missing few metabolic genes may cause important physiological characteristics in the specific active nutrition of AMF.AMF. The deep annotation of related genes indicated that the gene composition of AMF had some distinct characteristics different from other groups of group fungi, which largely reflected their special ecophysiological characteristics and evolutionary advantages. The phylogenetic relationship based on multiple gene alignment (phylogenomics) clearly indicated that AMF and Mucor (Mucoromycot) INA) the fungal relationship was closer, but not the previously considered biuclear subboundary fungus.3. found that there were significant differences in the expression of G.rosea during the development of the root, including the redox process (oxidation-reductio), which was mainly involved in the redox process (oxidation-reductio). N process), protein hydrolysis (proteolysis), transmembrane transport (transmembrane transport) and other processes. By comparing the similarities and differences of the G.rosea transcriptome in the two species of host plants that are far distant, the expression of the G.rosea gene in different hosts shows uncommon consistency: nearly half of the genes appear. Similar expression patterns. This consistency indicates that G.rosea is likely to use a very conservative gene expression regulation strategy to achieve its infection and colonization of all host plants. In addition, more than 40 expression patterns are also found by comparison of the transcriptional data of R.irregularis, a pattern species that is far closer to the relationship. The conserved AMF gene: these genes are obviously up-regulated in different species of AMF and in different species of host plants. These show that the annotation of G.rosea core genes in the conservative expression pattern indicates that secretory protein (Secreted protein) mediated signal transduction, transport protein (Transporter) mediated nutrition exchange, fatty acid chain extension and repair are shown. The process of lipid synthesis mediated by related enzymes may play a very important role in the establishment of AM symbiosis. Under the condition that the data of AMF are still very limited, these results not only provide a large amount of genetic data for the future research of AMF gene function, but also for the internal and other Glomeromycota groups. Comparative genomics or transcriptome studies of fungi provide the possibility.
【學(xué)位授予單位】:華中農(nóng)業(yè)大學(xué)
【學(xué)位級別】:博士
【學(xué)位授予年份】:2016
【分類號】:Q93
【相似文獻(xiàn)】
相關(guān)期刊論文 前10條
1 王亞軍;唐明;迪麗努爾;;定西檸條VA菌根真菌特征及種類研究[J];干旱地區(qū)農(nóng)業(yè)研究;2006年03期
2 徐麗娟;刁志凱;李巖;劉潤進(jìn);;菌根真菌的生理生態(tài)功能[J];應(yīng)用生態(tài)學(xué)報(bào);2012年01期
3 趙友春,馬啟明;山東省的菌根真菌及分布[J];生態(tài)學(xué)雜志;1990年06期
4 張美慶;王幼珊;黃磊;;我國北部的八種VA菌根真菌[J];真菌學(xué)報(bào);1992年04期
5 劉營,孔繁翔,楊積晴;菌根真菌對環(huán)境污染物的降解、轉(zhuǎn)化能力概述[J];上海環(huán)境科學(xué);1998年02期
6 賀學(xué)禮,李斌;VA菌根真菌與植物相互選擇性的研究[J];西北植物學(xué)報(bào);1999年03期
7 李明,張灼,彭彥華;蘭科菌根研究與應(yīng)用[J];云南農(nóng)業(yè)科技;2000年06期
8 宋勇春,馮固,李曉林;接種不同VA菌根真菌對紅三葉草利用不同磷源的影響[J];生態(tài)學(xué)報(bào);2001年09期
9 任嘉紅,張曉剛;VA菌根真菌提高沙棘抗旱性機(jī)理的研究[J];晉東南師范?茖W(xué)校學(xué)報(bào);2002年05期
10 曾松榮,方白玉;VA菌根真菌研究概況[J];韶關(guān)學(xué)院學(xué)報(bào)(自然科學(xué)版);2002年12期
相關(guān)會議論文 前10條
1 褚群;石寧;馮固;;不同菌根真菌接種效應(yīng)差異及相互作用[A];面向未來的土壤科學(xué)(中冊)——中國土壤學(xué)會第十二次全國會員代表大會暨第九屆海峽兩岸土壤肥料學(xué)術(shù)交流研討會論文集[C];2012年
2 朱國勝;劉作易;喻子牛;桂陽;;一種新的蘭科植物菌根真菌單菌絲團(tuán)分離方法[A];2010年中國菌物學(xué)會學(xué)術(shù)年會論文摘要集[C];2010年
3 郭良棟;;菌根真菌與全球變化[A];中國菌物學(xué)會2009學(xué)術(shù)年會論文摘要集[C];2009年
4 方揚(yáng);張小平;王元元;Kristina Lindstrom;;叢枝菌根真菌的研究與應(yīng)用[A];慶祝中國土壤學(xué)會成立60周年?痆C];2005年
5 林先貴;馮有智;張華勇;陳瑞蕊;王俊華;張佳寶;褚海燕;;高通量基因測序研究長期不同施肥對我國北方潮土叢枝菌根真菌多樣性的影響[A];面向未來的土壤科學(xué)(中冊)——中國土壤學(xué)會第十二次全國會員代表大會暨第九屆海峽兩岸土壤肥料學(xué)術(shù)交流研討會論文集[C];2012年
6 陳麗娜;劉曉華;曹荷艷;呂英民;;叢枝菌根真菌在園藝植物中的應(yīng)用[A];中國觀賞園藝研究進(jìn)展2012[C];2012年
7 彭思利;申鴻;郭濤;;接種叢枝菌根真菌對土壤水穩(wěn)性團(tuán)聚體特征的影響[A];第五次全國土壤生物和生物化學(xué)學(xué)術(shù)研討會論文集[C];2009年
8 張濤;孫羽;田長彥;馮固;;叢枝菌根真菌對四種短命植物生長發(fā)育和種子生產(chǎn)的影響[A];中國土壤學(xué)會第十一屆全國會員代表大會暨第七屆海峽兩岸土壤肥料學(xué)術(shù)交流研討會論文集(下)[C];2008年
9 馮固;張福鎖;李曉林;張俊伶;;集約化農(nóng)業(yè)生產(chǎn)體系中叢枝菌根真菌的作用與調(diào)控[A];第五次全國土壤生物和生物化學(xué)學(xué)術(shù)研討會論文集[C];2009年
10 賀忠群;賀超興;張志斌;鄒志榮;;叢枝菌根真菌提高植物耐鹽性研究進(jìn)展[A];中國園藝學(xué)會第七屆青年學(xué)術(shù)討論會論文集[C];2006年
相關(guān)重要報(bào)紙文章 前2條
1 胡良惠;老果園冬改注意“新植病”[N];山西科技報(bào);2003年
2 支勇平;我國黃土高原植被恢復(fù)和生態(tài)系統(tǒng)重建研究獲新成果[N];中國綠色時報(bào);2011年
相關(guān)博士學(xué)位論文 前10條
1 樊經(jīng)緯;水肥虧缺和刈割對牧草生長和叢枝菌根真菌的影響[D];蘭州大學(xué);2015年
2 張中峰;菌根真菌對青岡櫟幼苗耐旱性和土壤特性的影響及機(jī)理研究[D];南京林業(yè)大學(xué);2015年
3 溫祝桂;中國黃杉(Pseudotsuga sinensis)菌根真菌群落結(jié)構(gòu)研究及其特異性共生菌株的鑒定[D];南京農(nóng)業(yè)大學(xué);2014年
4 喬旭;叢枝菌根真菌在植物種間互作中的調(diào)節(jié)機(jī)制[D];中國農(nóng)業(yè)大學(xué);2016年
5 唐年武;基于RNA-seq的叢枝菌根真菌Gigaspora rosea基因構(gòu)成及其共生發(fā)育相關(guān)基因的分析[D];華中農(nóng)業(yè)大學(xué);2016年
6 盛敏;VA菌根真菌提高玉米耐鹽性機(jī)制與農(nóng)田土壤微生物多樣性研究[D];西北農(nóng)林科技大學(xué);2008年
7 劉毅;叢枝菌根真菌鈣信號相關(guān)基因的研究[D];華中農(nóng)業(yè)大學(xué);2012年
8 董秀麗;叢枝菌根真菌的分離鑒定和生物學(xué)特性研究及分子探針的設(shè)計(jì)與應(yīng)用[D];華中農(nóng)業(yè)大學(xué);2005年
9 范七君;叢枝菌根真菌及一氧化氮提高枳抗旱性及機(jī)理研究[D];華中農(nóng)業(yè)大學(xué);2011年
10 宋會興;石灰土上叢枝菌根真菌多樣性特征及其對適生種群生理生態(tài)特征的影響[D];西南大學(xué);2007年
相關(guān)碩士學(xué)位論文 前10條
1 唐哲;藍(lán)莓菌根真菌解磷特性及定殖特點(diǎn)分析[D];東北林業(yè)大學(xué);2015年
2 劉靈;叢枝菌根真菌對丹參酚酸生物合成的影響[D];東北林業(yè)大學(xué);2015年
3 趙興宇;大興安嶺野生藍(lán)莓菌根真菌分離及定殖分析[D];東北林業(yè)大學(xué);2015年
4 江玲;黑麥草、叢枝菌根真菌對不同番茄品種Cd吸收、富集的影響[D];西南大學(xué);2015年
5 馮國輝;叢枝菌根真菌對能源草柳枝稷生態(tài)適應(yīng)性的研究[D];中國地質(zhì)大學(xué)(北京);2015年
6 馬雪亭;菌根真菌與石斛屬藥用植物地理分布的相關(guān)性研究[D];北京協(xié)和醫(yī)學(xué)院;2015年
7 陳熠;海南島常見植物根圍巨孢囊目叢枝菌根真菌物種多樣性研究[D];海南大學(xué);2014年
8 李嵐嵐;海南香大蕉根際叢枝菌根真菌及菌根化蕉苗對枯萎病的防效研究[D];海南大學(xué);2015年
9 張偉;海南紅樹林叢枝菌根真菌的多樣性及抗鹽菌株的初步篩選[D];海南大學(xué);2014年
10 劉歡;不同叢枝菌根真菌對四種植物生長特性影響[D];甘肅農(nóng)業(yè)大學(xué);2016年
,本文編號:2169873
本文鏈接:http://sikaile.net/shoufeilunwen/jckxbs/2169873.html