固態(tài)體系的消相干效應(yīng)和量子調(diào)控
[Abstract]:Quantum mechanics has promoted the rapid development of science and technology in the past one hundred years. With the theoretical exploration and experimental progress of quantum computing and quantum information, quantum systems have shown great potential. Because of the parallelism brought by coherence, their ability is far beyond the classical computer. However, the requirements of quantum computation and quantum information are very demanding. The solid-state system has become an important physical platform because of its integrated and adjustable advantages. It mainly includes superconducting system, quantum dot system and so on. At the same time, the noise of control parameters and the coupling of the system and the external environment cause the system's decoherence. The appearance of the geometric dephase in the Berry phase for precise quantum control is also destroyed. The most important measure of quantum system performance is how many quantum logic gates can be performed in the coherent time. The methods of improving the coherence time are quantum error correction code, decoherence free subspace, dynamic decoupling and so on. This paper focuses on the elimination of phase in the solid state system. The development of dry and quantum control mainly includes the following aspects: 1. the basic unit qubits and corresponding logic gate operations of quantum computing and quantum information are briefly introduced. The physical realization platform of the common quantum computer is summarized, especially in the solid state quantum system. The quantization method is introduced. The deduction of the Markoff's principal equation and the non Markoff principal equation is given. The concept of the geometric phase is also used in this paper. The Berry phase and the extension of the phase are also discussed in this paper. The basic knowledge and the related background used in this paper are given a certain generalization of the charge quantum ratio of the.2. solid system. It will show the best coherence properties at the degenerate point (sweet point), but recently in the experiment of double quantum dots, in addition to the observation of the sweet point, the decoherence time is longer than the sweet point in the large offset region. In order to reveal the mechanism, we extend the system to three level, considering the higher of one of the quantum dots. The energy level. Using the spin Bose model to describe the interaction between the system and the environment, it is found that two low-energy states are located in the same quantum dot when the bias is large, and the energy level relaxation and the pure retrograde phase will disappear. But in the sweet point, the noise operator and the subspace of the two states with lower energy have the sigma x coupling, resulting in the extra relaxation process. The coherent property is not as good as the large offset region. The results obtained by numerical simulation are in good agreement with the experimental data, which proves the effectiveness of our analysis of the decoherence mechanism. The adiabatic impact model can simplify the whole control process as an optical device, and then discuss the oscillation of the pulse shape to the oscillation. The influence of the visibility and the method of using the hat pulse to improve the visibility, the classical wave field of.3. leads to the random distribution of the dynamic phase, thus causing the kinetic dephase of the quantum system. For the control process of the Berry phase, it will also cause the disturbance of the closed loop, thus producing the geometric dephase. The traditional dynamic decoupling order The column can offset the dynamic phase and effectively suppress the kinetic dephase, but it has no effect on the geometric dephase. We designed two dynamic decoupling sequences in the Berry phase control process, which can suppress the residual geometric dephase. The feasibility is verified by the numerical calculation. And with the geometric dephase suppression, When the coherence time of the quantum system is improved, the Berry phase will be restored. When the correlation time of the classical wave field becomes shorter, the suppression efficiency will be reduced. We also show that when the width of the pion pulse is narrow, the actual control will not destroy the suppression effect of the design sequence..4. can make up the coupling oscillator array by the superconducting transmission line oscillator, and the artificial two energy can be used. The atom is coupled with two adjacent transmission lines. Because interference can form a quantum switch that controls the single photon transport, the switch state is determined by the spin up or spin down of the qubits. In the coupled array, we adjust the characteristic frequency of the transmission line oscillator coupled with the two level atom, and the single photon transport switch. The fidelity can be greatly improved. If the two level atom is in the superposition state, the function of the quantum switch is similar to the beam splitter, and the single photon reflected wave packet and the transmission wave packet will also carry the qubit state information to the distance.
【學(xué)位授予單位】:中國科學(xué)技術(shù)大學(xué)
【學(xué)位級(jí)別】:博士
【學(xué)位授予年份】:2016
【分類號(hào)】:O413.1
【相似文獻(xiàn)】
相關(guān)期刊論文 前10條
1 張登玉;存在偶極間相互作用的兩能級(jí)原子的消相干[J];原子與分子物理學(xué)報(bào);2001年02期
2 易學(xué)華;阮文;余曉光;付風(fēng)蘭;;自旋為1/2粒子在消相干量子場作用下的絕熱和非絕熱幾何相位[J];量子電子學(xué)報(bào);2006年05期
3 郭振;閆連山;潘煒;羅斌;徐明峰;;量子糾纏消相干對(duì)確定型遠(yuǎn)程制備的影響[J];物理學(xué)報(bào);2011年06期
4 張登玉,楊昆,唐志祥;能級(jí)間同時(shí)存在衰變和躍遷時(shí)的消相干特性[J];原子與分子物理學(xué)報(bào);2005年01期
5 周騰飛;陳志銓;江燕燕;嵇英華;;互感效應(yīng)對(duì)磁通量子比特消相干影響的研究[J];量子電子學(xué)報(bào);2008年06期
6 周騰飛;江燕燕;陳志銓;嵇英華;;環(huán)境對(duì)磁通量子比特消相干的影響及對(duì)策研究[J];量子光學(xué)學(xué)報(bào);2008年04期
7 連漢麗;胡明亮;;三量子位系統(tǒng)的消相干和退糾纏(英文)[J];光子學(xué)報(bào);2008年08期
8 陳艷;量子位非馬爾柯夫過程的消相干[J];河海大學(xué)學(xué)報(bào)(自然科學(xué)版);2004年06期
9 陳平形,李承祖,黃明球,梁林梅;在任意溫度的熱庫中量子位的消相干[J];光子學(xué)報(bào);2000年01期
10 張登玉;壓縮真空?qǐng)鲋辛孔哟鎯?chǔ)單元的消相干特性[J];光電子·激光;2002年06期
相關(guān)會(huì)議論文 前4條
1 王發(fā)強(qiáng);於亞飛;馮勛立;張智明;;非馬爾科夫環(huán)境下的量子比特消相干[A];第十四屆全國量子光學(xué)學(xué)術(shù)報(bào)告會(huì)報(bào)告摘要集[C];2010年
2 郝翔;;在自旋為1的量子鏈中長程熱糾纏的消相干[A];蘇州市自然科學(xué)優(yōu)秀學(xué)術(shù)論文匯編(2008-2009)[C];2010年
3 周正威;;可擴(kuò)展的容錯(cuò)量子計(jì)算[A];第十一屆全國量子光學(xué)學(xué)術(shù)會(huì)議論文摘要集[C];2004年
4 崔巍;席在榮;潘宇;;非馬爾可夫開放量子系統(tǒng)的消相干最優(yōu)控制[A];第二十七屆中國控制會(huì)議論文集[C];2008年
相關(guān)重要報(bào)紙文章 前1條
1 王小龍;量子消相干現(xiàn)象被成功抑制[N];科技日?qǐng)?bào);2011年
相關(guān)博士學(xué)位論文 前4條
1 秦曉科;固態(tài)體系的消相干效應(yīng)和量子調(diào)控[D];中國科學(xué)技術(shù)大學(xué);2016年
2 童朝陽;量子通信中的量子消相干和量子中繼器[D];湖南師范大學(xué);2008年
3 閆妍;利用測量和反饋操控量子態(tài)克服消相干[D];北京理工大學(xué);2015年
4 胡勇;基于Josephson效應(yīng)的量子信息過程[D];中國科學(xué)技術(shù)大學(xué);2007年
相關(guān)碩士學(xué)位論文 前6條
1 周騰飛;磁通量子比特電路消相干的研究[D];江西師范大學(xué);2008年
2 樸民哲;圖態(tài)的制備及量子消相干問題初探[D];延邊大學(xué);2011年
3 高丹;在熱平衡和內(nèi)稟消相干存在下Dzyaloshinsky-Moriya相互作用對(duì)海森堡自旋鏈的糾纏的影響[D];延邊大學(xué);2011年
4 周玲;基于量子反饋的消相干與消糾纏抑制研究[D];安徽大學(xué);2014年
5 孫曉佩;雙模多光子糾纏態(tài)與多原子體系的消相干[D];河北師范大學(xué);2009年
6 王媛;確定性的任意二粒子和三粒子糾纏態(tài)的聯(lián)合遠(yuǎn)程制備[D];延邊大學(xué);2013年
,本文編號(hào):2166216
本文鏈接:http://sikaile.net/shoufeilunwen/jckxbs/2166216.html