短壽命氣候污染物(SLCPs)的有效輻射強迫及對全球氣候的影響研究
[Abstract]:With the rapid development of the human industry, the environment on which we live is deteriorating and the global climate changes. How to slow down the rate of global climate change and reduce the range of temperature has been one of the serious problems faced by human beings. To control the concentration of two carbon dioxide in the air and reduce the short life climate pollution at the same time. This article only considers tropospheric ozone, methane and black carbon aerosols, SLCPs) is one of the effective ways to mitigate climate change in a short time. However, the effects of various climate pollutants on temperature are different, and there are interactions, so how the emission of pollutants will eventually affect the future climate will still need to be given. This paper uses the second generation atmospheric circulation model BCC_AGCM2.0.1 of the National Climate Center and the aerosol? Climate coupling model system of the aerosol physical and chemical model CUACE/Aero of the China Academy of Meteorological Sciences (CMA), BCC_AGCM2.0.1_CUACE/Aero, in the fifth assessment report of the Intergovernmental Panel on climate change (IPCC AR5). In the framework of the newly proposed effective radiation forcing (ERF) concept, combined with the latest observation data and typical emission scenarios (RCPs), the effective radiation forcing of short life climate pollutants and their effects on the global climate are simulated respectively. The main conclusions are as follows: (1) the effective radiation forcing of tropospheric ozone concentration changes since the life of the industrial leather The average value of the ball is 0.46 W/m2, and the global average surface temperature rises by 0.36 degree C, and the global average surface water vapor flux and precipitation change are 0.02 mm/day. because of the change of troposphere ozone concentration, the cloud amount in the middle and high latitudes increases obviously, but the cloud amount in the vicinity of 40 degree N decreases significantly. This is related to the change of evaporation of surface water vapor and convergence and divergence of air flow. (2) the effective radiation forcing of methane concentration changes in the atmosphere since the industrial revolution is 0.49 W/m2 (the uncertainty of spatial heterogeneity and nature of its concentration is less than 2%), resulting in the global average near ground temperature rising by 0.31 degrees C, and the heating is mainly distributed in the north and the south. In the middle and high latitudes of the hemisphere, the global average surface water vapor flux and precipitation caused by the increase of methane concentration are all 0.02 mm/day. while the change of the surface water vapor flux and the change of the convergence and divergence of the air flow increase the cloud amount in the high latitudes, while the cloud amount in the middle and low latitudes decreases. (3) between 2010 and 2050, it is guaranteed. The global average effective radiation force caused by the simultaneous changes in the concentration of pollutant emission levels (RCP8.5) and SLCPs two is 2.03 W/m2, thus increasing the global average near ground temperature by 1.95 degrees centigrade. The surface temperature is 1.74 W/m2 and 0.16 W/m2, which causes the surface temperature to be 1.72 and 0.26, respectively. Without the economic cost, the effective radiation force of the SLCPs concentration by 2050 (RCP2.6) is -0.38 W/m2, and the global average near ground temperature change is -0.2 C; on this basis, the carbon dioxide concentration is changed at the same time. Under the circumstances, the global average near ground temperature will rise 0.5 degrees C in 2050. In full consideration of the reasonable economic cost of emission reduction (RCP4.5), in 2050, the effective radiation forcing of SLCPs concentration alone is -0.22W/m2, resulting in the global average near ground temperature change to -0.04 C; and the concentration of carbon dioxide will be changed at the same time. The average near ground temperature of the ball will rise by 1.08 degrees C. The global average near ground temperature increment in 2050 is obviously reduced by two kinds of emission reduction scenarios. (4) RCP4.5 may be closest to the path of future emission reduction. Compared with RCP8.5, the global average near surface gas temperature decreased by 0.46 degrees to the high latitude in the northern hemisphere, compared with the SLCPs concentration change in 2050. At the same time, the variation of the global average surface water vapor flux and precipitation is the change of -0.02 mm/day. cloud amount mainly in the middle and high latitudes of the northern and southern hemispheres, which may be related to the change of the evaporation of the surface water vapor and the convergence and divergence of the air flow. The decrease of precipitation is mainly in the area, while the precipitation in most tropical regions increases.
【學(xué)位授予單位】:蘭州大學(xué)
【學(xué)位級別】:博士
【學(xué)位授予年份】:2016
【分類號】:X51;P461
【相似文獻】
相關(guān)期刊論文 前10條
1 王喜紅,石廣玉;東亞地區(qū)人為硫酸鹽的直接輻射強迫[J];高原氣象;2001年03期
2 王喜紅,石廣玉;東亞地區(qū)云和地表反照率對硫酸鹽直接輻射強迫的影響[J];氣象學(xué)報;2002年06期
3 吳澗;劉紅年;王衛(wèi)國;劉罡;;硫酸鹽直接輻射強迫的在線與固定轉(zhuǎn)化率模擬方法的對比研究[J];熱帶氣象學(xué)報;2005年06期
4 石廣玉;大氣微量氣體的輻射強迫與溫室氣候效應(yīng)[J];中國科學(xué)(B輯 化學(xué) 生命科學(xué) 地學(xué));1991年07期
5 于秀蘭,石廣玉;平流層溫度調(diào)整后的輻射強迫的簡化計算[J];高原氣象;2001年03期
6 王喜紅,石廣玉,馬曉燕;東亞地區(qū)對流層人為硫酸鹽輻射強迫及其溫度響應(yīng)[J];大氣科學(xué);2002年06期
7 羅云峰,周秀驥,李維亮;大氣氣溶膠輻射強迫及氣候效應(yīng)的研究現(xiàn)狀[J];地球科學(xué)進展;1998年06期
8 楊樹臣;高太長;劉磊;劉西川;;基于全天空紅外測云系統(tǒng)的云輻射強迫研究方法[J];氣象水文海洋儀器;2012年02期
9 周秀驥,李維亮,羅云峰;中國地區(qū)大氣氣溶膠輻射強迫及區(qū)域氣候效應(yīng)的數(shù)值模擬[J];大氣科學(xué);1998年04期
10 黃曉璜;崔國民;華澤釗;徐家良;;用一維輻射傳遞方程計算二氧化碳的輻射強迫[J];上海理工大學(xué)學(xué)報;2013年06期
相關(guān)會議論文 前10條
1 沈志寶;成天濤;;中國西北大氣沙塵輻射強迫特性的數(shù)值試驗[A];中國顆粒學(xué)會2002年年會暨海峽兩岸顆粒技術(shù)研討會會議論文集[C];2002年
2 王志立;張華;郭品文;王在志;;碳類氣溶膠的直接輻射強迫及其對東亞氣候影響的模擬研究[A];中國氣象學(xué)會2007年年會氣候變化分會場論文集[C];2007年
3 張華;王志立;;碳類氣溶膠的直接輻射強迫及其對東亞氣候影響的模擬研究[A];第26屆中國氣象學(xué)會年會大氣成分與天氣氣候及環(huán)境變化分會場論文集[C];2009年
4 陳林;石廣玉;王標;張鵬;;基于衛(wèi)星資料的中國陸地氣溶膠直接輻射強迫研究[A];第十七屆中國遙感大會摘要集[C];2010年
5 吳蓬萍;韓志偉;;中國夏季硫酸鹽氣溶膠間接輻射強迫的數(shù)值模擬研究[A];第十屆全國氣溶膠會議暨第六屆海峽兩岸氣溶膠技術(shù)研討會摘要集[C];2009年
6 曹龍;;氣候系統(tǒng)對二氧化碳強迫和太陽輻射強迫的響應(yīng)[A];創(chuàng)新驅(qū)動發(fā)展 提高氣象災(zāi)害防御能力——S5應(yīng)對氣候變化、低碳發(fā)展與生態(tài)文明建設(shè)[C];2013年
7 蘇婧;黃建平;;利用衛(wèi)星資料及模式模擬對東亞沙塵云輻射強迫的研究[A];中國氣象學(xué)會2007年年會大氣成分觀測、研究與預(yù)報分會場論文集[C];2007年
8 明鏡;效存德;杜振彩;Mark Flanner;;中國西部雪冰中的黑碳及其輻射強迫[A];第七屆全國優(yōu)秀青年氣象科技工作者學(xué)術(shù)研討會論文集[C];2010年
9 郝增周;潘德爐;龔芳;;海洋氣溶膠直接輻射強迫的衛(wèi)星遙感研究初探[A];第十七屆中國遙感大會摘要集[C];2010年
10 吳金秀;肖穩(wěn)安;張華;;SF6氣體的輻射強迫和全球增溫潛能研究[A];中國氣象學(xué)會2007年年會大氣成分觀測、研究與預(yù)報分會場論文集[C];2007年
相關(guān)博士學(xué)位論文 前3條
1 謝冰;短壽命氣候污染物(SLCPs)的有效輻射強迫及對全球氣候的影響研究[D];蘭州大學(xué);2016年
2 蘇婧;中國西北地區(qū)沙塵氣溶膠輻射強迫效應(yīng)的研究[D];蘭州大學(xué);2010年
3 柳晶;中國地區(qū)氣溶膠光學(xué)特性及輻射強迫的衛(wèi)星遙感觀測研究[D];南京信息工程大學(xué);2008年
相關(guān)碩士學(xué)位論文 前10條
1 劉玉芝;大氣二氧化碳的輻射強迫及其溫室效應(yīng)的飽和度[D];南京氣象學(xué)院;2002年
2 王玉潔;通過衛(wèi)星資料反演東亞中緯度地區(qū)沙塵云的輻射強迫[D];蘭州大學(xué);2006年
3 洪霞;亞熱帶典型植物幼苗對輻射強迫的高光譜響應(yīng)研究[D];浙江農(nóng)林大學(xué);2011年
4 姚明桃;輻射強迫對中亞熱帶三種典型樹種幼苗生理生態(tài)的影響[D];浙江農(nóng)林大學(xué);2011年
5 田華;中國中東部地區(qū)氣溶膠輻射強迫及其氣候效應(yīng)的數(shù)值模擬[D];中國氣象科學(xué)研究院;2004年
6 陳艷;中國西北干旱半干旱區(qū)沙塵氣溶膠對云特性的影響及云的輻射強迫效應(yīng)[D];蘭州大學(xué);2007年
7 沈鐘平;中國地區(qū)硝酸鹽氣溶膠光學(xué)厚度和直接輻射強迫的模擬研究[D];中國氣象科學(xué)研究院;2009年
8 馬越界;利用星載云雷達資料研究青藏高原的云輻射強迫[D];蘭州大學(xué);2011年
9 馬井會;黑碳和沙塵氣溶膠光學(xué)特性及全球輻射強迫的模擬研究[D];南京信息工程大學(xué);2007年
10 趙燃;北京區(qū)域大氣氣溶膠污染及其輻射強迫研究[D];蘭州大學(xué);2014年
,本文編號:2158187
本文鏈接:http://sikaile.net/shoufeilunwen/jckxbs/2158187.html