分?jǐn)?shù)階偏微分方程數(shù)值算法及其在力學(xué)中的應(yīng)用
[Abstract]:In recent years, fractional calculus theory and method have been widely used in various fields of science and engineering. Fractional calculus provides a powerful tool to describe the memory and inheritance of various materials and processes. This paper mainly deals with the numerical calculation method of several class of time fractional partial differential equations and the fractional order micro Some applications of integral theory and numerical method in mechanics. First, we propose two compact finite difference schemes for the two-dimensional nonlinear fractional order rediffusion equation, and give the theoretical analysis of the stability and convergence of the two schemes by Fourier analysis. The second, the fractional order Stokes of the generalized two order fluid under heating. First, we propose a numerical parameter estimation method to estimate the order of the Riemann-Liouville fractional derivative. Third, for the two-dimensional fractional Cable equation, we propose a space four order compact finite difference scheme, and give the theoretical proof of the stability and convergence by the Fu Liye analysis method. In the method of estimating the numerical parameter, the optimal estimation of the order of two fractional derivatives is given. Fourth. In the tumor thermotherapy experiment, we construct a time fractional thermal wave model of the double spherical tissue, and use the implicit difference method to give the numerical solution of the model. For the inverse problem, we propose a kind of heat therapy experiment data. In the nonlinear parameter estimation method, the optimal estimation of the unknown fractional derivative and relaxation time parameters is given. Finally, we establish a space fractional order anomalous diffusion model under the interaction of the concentration gradient and the potential gradient for the transport process of the sodium ion cross wall, and the numerical solution of the problem is obtained by the finite difference method. In the first chapter, we give a brief introduction to the historical development of fractional calculus. Secondly, we introduce several numerical methods for solving the partial differential equation of time fractional order and several fractional order involved in this paper. In the second chapter, we study the two-dimensional nonlinear fractional order reaction sub diffusion equation, in which the nonlinear source term g (U, x, y, t) has a two order continuous partial derivative (?) g (U, x, y, t) / (?) T2 and the U satisfies the condition, that is, first, we construct a kind of time first order, The compact finite difference scheme of space four order: on both sides of the equation, we use the definition of the Riemann-Liouville fractional integral, the four order compact difference scheme approximating the two order derivative and the trapezoid formula to approximate the nonlinear source term. Convergence. Numerical examples verify our theoretical analysis. Secondly, we use linear interpolation technique to construct a compact finite difference scheme of time two order, space four order, and use Fourier analysis to give the condition of stability and convergence of the compact finite difference scheme. Numerical examples verify the accuracy and effectiveness of the algorithm. In the third chapter, we study the first problem of the fractional order Stokes of the generalized two order fluid under heating. We propose a numerical method to estimate the order of the fractional derivative of the Riemann-Liouville. First, we use the implicit numerical method to solve the positive problem. For the inverse problem, we help the Digamma function to obtain the fractional sensitive equation. In addition, the Levenberg-Marquardt iterative algorithm is introduced to estimate the order of the unknown Riemann-Liouville fractional derivative. In order to verify the effectiveness of the algorithm, we give the solution of the estimation problem in two cases where the measured value contains random measurement error, and the influence of the selection of the initial parameter values on the estimated results is discussed. The numerical example shows that the numerical algorithm proposed by us is effective for estimating the order of the fractional derivative of Riemann-Liouville. In the fourth chapter, we study the two-dimensional fractional Cable equation: we study the estimation of the order of the two fractional derivatives in the two-dimensional fractional Cable equation. For the Yu Zheng problem, we propose a space four order compact. The finite difference scheme is presented and the theoretical proof of the stability and convergence of the compact finite difference scheme is given by Fourier analysis. For the inverse problem, we first obtain the fractional order sensitive matrix, and then introduce the Levenberg-Marquardt iterative method, and give the optimal estimation of the order of the two fractional derivative. The effect of the selection of initial parameter values on the estimation results. Numerical examples verify the effectiveness of our algorithm. In the fifth chapter, we construct a time fractional thermal wave model for the double layer spherical structure, which contains the heat conduction in the tumor (0 < R < < < < < R) and the healthy tissue (Rr < a). The equation is as follows: we use the implicit difference method, we give For the inverse problem, for the inverse problem, with the aid of the thermotherapy experimental data, we use the nonlinear parameter estimation method to give the optimal estimation of the unknown fractional derivative and relaxation time parameters, and discuss the influence of the selection of the initial parameter values on the estimation results. The time fractional heat wave model proposed by us is suitable for the heat conduction behavior in the simulated thermotherapy test, and the method of estimating the numerical parameters is effective for estimating the parameters in the fractional heat wave model in the composite medium. In the sixth chapter, based on the fractional order calculus theory, the fractional order Fick's law is used. Under the common action of concentration gradient and potential gradient, the anomalous transport of sodium ions across the intestinal wall has been established. An anomalous transport model with the fractional derivative of Riemann-Liouville space is established. The numerical solution of this problem is obtained by the finite difference method. We have studied the two layers of sodium ions inside and outside the cells during the transport of the intestinal wall. The concentration of the concentration and the average concentration of sodium ions at the capillaries change with time, and according to the different values of different parameters, describe the different trend of the change of sodium ion concentration, and discuss the change process of the sodium ion concentration curve and the sodium ion in the process of the change of the spatial fractional derivative in the process of taking different values. The research results show that the fractional order anomalous diffusion model is suitable for describing the trans intestinal transport process of sodium ions. The seventh chapter, we give a summary of this paper and the possible future research direction.
【學(xué)位授予單位】:山東大學(xué)
【學(xué)位級別】:博士
【學(xué)位授予年份】:2016
【分類號】:O241.82
【相似文獻】
相關(guān)期刊論文 前10條
1 王德金;鄭永愛;;分?jǐn)?shù)階混沌系統(tǒng)的延遲同步[J];動力學(xué)與控制學(xué)報;2010年04期
2 楊晨航,劉發(fā)旺;分?jǐn)?shù)階Relaxation-Oscillation方程的一種分?jǐn)?shù)階預(yù)估-校正方法[J];廈門大學(xué)學(xué)報(自然科學(xué)版);2005年06期
3 王發(fā)強;劉崇新;;分?jǐn)?shù)階臨界混沌系統(tǒng)及電路實驗的研究[J];物理學(xué)報;2006年08期
4 夏源;吳吉春;;分?jǐn)?shù)階對流——彌散方程的數(shù)值求解[J];南京大學(xué)學(xué)報(自然科學(xué)版);2007年04期
5 張隆閣;;一類參數(shù)不確定混沌系統(tǒng)的分?jǐn)?shù)階自適應(yīng)同步[J];中國科技信息;2009年15期
6 陳世平;劉發(fā)旺;;一維分?jǐn)?shù)階滲透方程的數(shù)值模擬[J];高等學(xué)校計算數(shù)學(xué)學(xué)報;2010年04期
7 辛寶貴;陳通;劉艷芹;;一類分?jǐn)?shù)階混沌金融系統(tǒng)的復(fù)雜性演化研究[J];物理學(xué)報;2011年04期
8 黃睿暉;;分?jǐn)?shù)階微方程的迭代方法研究[J];長春理工大學(xué)學(xué)報;2011年06期
9 蔣曉蕓,徐明瑜;分形介質(zhì)分?jǐn)?shù)階反常守恒擴散模型及其解析解[J];山東大學(xué)學(xué)報(理學(xué)版);2003年05期
10 陳玉霞;高金峰;;一個新的分?jǐn)?shù)階混沌系統(tǒng)[J];鄭州大學(xué)學(xué)報(理學(xué)版);2009年04期
相關(guān)會議論文 前10條
1 李西成;;經(jīng)皮吸收的分?jǐn)?shù)階藥物動力學(xué)模型[A];中國力學(xué)學(xué)會學(xué)術(shù)大會'2009論文摘要集[C];2009年
2 謝勇;;分?jǐn)?shù)階模型神經(jīng)元的動力學(xué)行為及其同步[A];第四屆全國動力學(xué)與控制青年學(xué)者研討會論文摘要集[C];2010年
3 張碩;于永光;王亞;;帶有時滯和隨機擾動的不確定分?jǐn)?shù)階混沌系統(tǒng)準(zhǔn)同步[A];中國力學(xué)大會——2013論文摘要集[C];2013年
4 李常品;;分?jǐn)?shù)階動力學(xué)的若干關(guān)鍵問題及研究進展[A];中國力學(xué)大會——2013論文摘要集[C];2013年
5 李常品;;分?jǐn)?shù)階動力學(xué)簡介[A];第三屆海峽兩岸動力學(xué)、振動與控制學(xué)術(shù)會議論文摘要集[C];2013年
6 蔣曉蕓;徐明瑜;;時間依靠分?jǐn)?shù)階Schr銉dinger方程中的可動邊界問題[A];中國力學(xué)學(xué)會學(xué)術(shù)大會'2009論文摘要集[C];2009年
7 王花;;分?jǐn)?shù)階混沌系統(tǒng)的同步在圖像加密中的應(yīng)用[A];第二屆全國隨機動力學(xué)學(xué)術(shù)會議摘要集與會議議程[C];2013年
8 王在華;;分?jǐn)?shù)階動力系統(tǒng)的若干問題[A];第三屆全國動力學(xué)與控制青年學(xué)者研討會論文摘要集[C];2009年
9 張碩;于永光;王莎;;帶有時滯和隨機擾動的分?jǐn)?shù)階混沌系統(tǒng)同步[A];第十四屆全國非線性振動暨第十一屆全國非線性動力學(xué)和運動穩(wěn)定性學(xué)術(shù)會議摘要集與會議議程[C];2013年
10 李西成;;一個具有糊狀區(qū)的分?jǐn)?shù)階可動邊界問題的相似解研究[A];中國力學(xué)大會——2013論文摘要集[C];2013年
相關(guān)博士學(xué)位論文 前10條
1 陳善鎮(zhèn);兩類空間分?jǐn)?shù)階偏微分方程模型有限差分逼近的若干研究[D];山東大學(xué);2015年
2 任永強;油藏與二氧化碳埋存問題的數(shù)值模擬與不確定性量化分析以及分?jǐn)?shù)階微分方程的數(shù)值方法[D];山東大學(xué);2015年
3 蔣敏;分?jǐn)?shù)階微分方程理論分析與應(yīng)用問題的研究[D];電子科技大學(xué);2015年
4 卜紅霞;基于分?jǐn)?shù)階傅里葉域稀疏表征的CS-SAR成像理論與算法研究[D];北京理工大學(xué);2015年
5 楊變霞;分?jǐn)?shù)階Laplace算子的譜理論及其在微分方程中的應(yīng)用[D];蘭州大學(xué);2015年
6 邵晶;幾類微分系統(tǒng)的定性理論及其應(yīng)用[D];曲阜師范大學(xué);2015年
7 方益;分?jǐn)?shù)階Yamabe問題的一些緊性結(jié)果[D];中國科學(xué)技術(shù)大學(xué);2015年
8 王國濤;幾類分?jǐn)?shù)階非線性微分方程解的存在理論及應(yīng)用[D];西安電子科技大學(xué);2014年
9 陳明華;分?jǐn)?shù)階微分方程的高階算法及理論分析[D];蘭州大學(xué);2015年
10 孟偉;基于分?jǐn)?shù)階拓展算子的灰色預(yù)測模型[D];南京航空航天大學(xué);2015年
相關(guān)碩士學(xué)位論文 前10條
1 黃志穎;非線性時間分?jǐn)?shù)階微分方程的數(shù)值解法[D];華南理工大學(xué);2015年
2 趙九龍;基于分?jǐn)?shù)階微積分的三維圖像去噪增強算法研究[D];寧夏大學(xué);2015年
3 楚彩虹;單載波分?jǐn)?shù)階傅里葉域均衡系統(tǒng)及關(guān)鍵技術(shù)研究[D];鄭州大學(xué);2015年
4 全曉靜;非線性分?jǐn)?shù)階積分方程的Adomian解法[D];寧夏大學(xué);2015年
5 黃潔;非線性分?jǐn)?shù)階Volterra積分微分方程的小波數(shù)值解法[D];寧夏大學(xué);2015年
6 莊嶠;復(fù)合介質(zhì)中時間分?jǐn)?shù)階熱傳導(dǎo)正逆問題及其應(yīng)用研究[D];山東大學(xué);2015年
7 高素娟;分?jǐn)?shù)階延遲偏微分方程的緊致有限差分方法[D];山東大學(xué);2015年
8 趙珊珊;時—空分?jǐn)?shù)階擴散方程的快速算法以及MT-TSCR-FDE的快速數(shù)值解法[D];山東大學(xué);2015年
9 王珍;分?jǐn)?shù)階奇異邊值問題的研究[D];山東師范大學(xué);2015年
10 馮靜;一類分?jǐn)?shù)階奇異脈沖邊值問題正解的存在性研究[D];山東師范大學(xué);2015年
,本文編號:2156914
本文鏈接:http://sikaile.net/shoufeilunwen/jckxbs/2156914.html