基于固態(tài)可調(diào)控超導(dǎo)量子電路的若干量子光學(xué)問(wèn)題的研究
[Abstract]:Quantum optics is a study of the interaction between light and matter. It is a perfect combination of quantum field theory and physical optics. Its theoretical framework consists of a semiclassical theory involving only medium quantized semiclassical theory and a quantum theory of both medium and light field. Quantum optics has attracted many outstanding physicists from the date of its birth. The research system has also developed from the original natural atomic system to various new quantum optical systems, such as the quantum dot system, the NV color center system, the optical mechanical system, the superconducting quantum circuit system. Among them, the superconducting quantum system based on the Joseph Sen's section has been used to show many interesting quantum optical phenomena. As the core component of the superconducting circuit, the superconducting qubits can be tuned and controlled by the external parameters, and their behavior is similar to the artificial multilevel atom. Therefore, compared with the traditional cavity quantum electrodynamics, the circuit quantum electrodynamics system has a great tunability and can be used. It can be controlled to achieve flexible quantum optical phenomena through regulation and control. The research work of this paper is carried out by the system of superconducting circuits, and some innovative results have been obtained, mainly: 1. the strong coupling or super coupling interaction of a driven superconducting charge bit with a transmission line harmonic oscillator. In the circuit quantum electrodynamics system, we show the theoretical study of the quantum Zeno effect. By using the ornament state method, we predict the dynamic behavior of the decorated bits under two opposite projection measurements. For very frequent repeated measurements, we have shown that the survival probability of the initial state of the decorated bits has an exponent. The form, and its Zeno time is two orders of magnitude longer than the bare bit. For slow repeated measurements, we find that the detuning of the drive field has an important effect on the measurement dynamics of the bit, and under the appropriate system parameters, the Zeno effect appears in the non resonant coupling case. We emphasize that for a normal two level system, this The Zeno effect can not occur by.2. by driving an effective three level superconducting system composed of the strong coupling of the charge bit and the harmonic oscillator of the transmission line. We studied the electromagnetic induction transparency and the Autler-Townes splitting. In the ornament state framework and the steady state approximation, we studied the system's linearity to a weak detection signal. In response. By means of spectral line decomposition and the remaining constraints, we obtain the detailed conditions for the implementation of the electromagnetic induction transparency and Autler-Townes splitting of the ornament state system, and present a corresponding "phase diagram". Compared with the general bare system, these conditions have an additional dependence on the parameters of the bit harmonic subsystem. As a result, by tuning the Jose A Sen coupling energy of the bit, we present the transition from the electromagnetic induction to the Autler-Townes splitting. Our study again shows the advantage of the tunability of the solid-state superconducting quantum circuit.3.. We have studied the electromagnetically induced transparency and the Autler-Townes splitting of the four level V- superconducting system. The two superconducting charge bits of the superconducting quantum interferometer are composed of two superconducting charge bits. We give the eigenvalues and the general solutions of the eigenstates. We find that, for the absorption spectrum of the detection field, this four level system can display multiple dip, up to up to 3 dip, which breaks the traditional corresponding relationship: the N+1 level system shows up to N-1 dip. through the most. The four level system is decomposed into two three energy level subsystems. We give a reasonable explanation for this discovery. We also show that by the parameters of the tuning system, the absorption peak and the role of dip are a convertible.4. using a cyclic transition delta type three level superconducting qubit. We have studied the nonlinear multi wave. Mixing phenomenon. Due to the lack of the selection rule in this system, we have theoretically demonstrated that the three wave, four wave and five wave mixing can coexist for the first time. For only one superconducting bit, the efficiency of four wave mixing can be as high as 0.1%, which can be compared to the wave mixing efficiency of many previous atomic systems. We also show the three wave. The spectral lines of the five wave mixing signal have Autler-Townes splitting, and the coherent superposition of the quantum interference to the total signals - the three and five wave mixing signals - has an important effect on the use of a circular driven three level superconducting Joseph Sen system. We have studied a new type of phase and frequency sensitive microwave amplification. The reduction. Different from the previous linear theory of pure phase sensitive amplification, a new physical mechanism - the common effect of nonlinear wave mixing and wave interference - is proposed not only to amplify the signal but also to decrease, which is called interference nonlinear optics. We have shown that the output is tuned by tuning the relative phase. The signal has undergone a jump transition from a large gain to a deep suppression so that the system can act as a phase controlled amplitude modulator. In addition, by changing the frequency of the drive field, we show the continuous change of the output signal from the amplification to the decrease, thus the system can be filled as a frequency controlled amplitude modulator. The research opens up a new perspective for the wide application of microwave signals in quantum information science.
【學(xué)位授予單位】:華中科技大學(xué)
【學(xué)位級(jí)別】:博士
【學(xué)位授予年份】:2016
【分類號(hào)】:O431.2
【相似文獻(xiàn)】
相關(guān)期刊論文 前10條
1 第十屆全國(guó)量子光學(xué)學(xué)術(shù)報(bào)告會(huì)會(huì)務(wù)組 ,李洪才;第十屆全國(guó)量子光學(xué)學(xué)術(shù)報(bào)告會(huì)紀(jì)要[J];量子光學(xué)學(xué)報(bào);2002年S1期
2 ;中國(guó)科學(xué)院量子光學(xué)重點(diǎn)實(shí)驗(yàn)室[J];中國(guó)激光;2003年08期
3 ;第十一屆全國(guó)量子光學(xué)學(xué)術(shù)會(huì)議在四川都江堰市勝利召開(kāi)[J];量子光學(xué)學(xué)報(bào);2004年S1期
4 胡艷芳;第十一屆全國(guó)量子光學(xué)學(xué)術(shù)會(huì)議在四川都江堰召開(kāi)[J];中國(guó)激光;2004年10期
5 ;第十二屆全國(guó)量子光學(xué)學(xué)術(shù)報(bào)告會(huì)紀(jì)要[J];量子光學(xué)學(xué)報(bào);2006年04期
6 ;第十三屆全國(guó)量子光學(xué)學(xué)術(shù)報(bào)告會(huì)紀(jì)要[J];量子光學(xué)學(xué)報(bào);2008年03期
7 ;第十四屆全國(guó)量子光學(xué)學(xué)術(shù)報(bào)告會(huì)紀(jì)要[J];量子光學(xué)學(xué)報(bào);2010年03期
8 ;第十四屆全國(guó)量子光學(xué)學(xué)術(shù)報(bào)告會(huì)剪影[J];量子光學(xué)學(xué)報(bào);2010年03期
9 滕永祿;;西德量子光學(xué)研究所近況[J];激光與光電子學(xué)進(jìn)展;1983年12期
10 詹達(dá)三;美國(guó)量子光學(xué)專家納杜西來(lái)華講學(xué)訪問(wèn)[J];物理;1981年12期
相關(guān)會(huì)議論文 前10條
1 王雪華;;納微結(jié)構(gòu)中的量子光學(xué)(英文)[A];介觀光學(xué)及其應(yīng)用研討會(huì)論文集[C];2007年
2 第十屆全國(guó)量子光學(xué)學(xué)術(shù)報(bào)告會(huì)會(huì)務(wù)組;李洪才;;第十屆全國(guó)量子光學(xué)學(xué)術(shù)報(bào)告會(huì)紀(jì)要[A];第十屆全國(guó)量子光學(xué)學(xué)術(shù)報(bào)告會(huì)論文論文集[C];2002年
3 宋康寧;叢爽;;線性量子光學(xué)系統(tǒng)的控制策略[A];Proceedings of 14th Chinese Conference on System Simulation Technology & Application(CCSSTA’2012)[C];2012年
4 ;第十一屆全國(guó)量子光學(xué)學(xué)術(shù)會(huì)議在四川都江堰市勝利召開(kāi)[A];第十一屆全國(guó)量子光學(xué)學(xué)術(shù)會(huì)議論文摘要集[C];2004年
5 ;第十四屆全國(guó)量子光學(xué)會(huì)議日程安排[A];第十四屆全國(guó)量子光學(xué)學(xué)術(shù)報(bào)告會(huì)報(bào)告摘要集[C];2010年
6 ;第十三屆全國(guó)量子光學(xué)學(xué)術(shù)報(bào)告會(huì)日程安排[A];第十三屆全國(guó)量子光學(xué)學(xué)術(shù)報(bào)告會(huì)論文摘要集[C];2008年
7 張衛(wèi)平;區(qū)澤宇;陳麗清;;基于相干原子系綜的量子光學(xué)實(shí)驗(yàn)研究[A];第十五屆全國(guó)原子與分子物理學(xué)術(shù)會(huì)議論文摘要集[C];2009年
8 杜春光;陳紅藝;李師群;;約瑟夫森器件的量子光學(xué)與左手性質(zhì)理論研究[A];第十二屆全國(guó)量子光學(xué)學(xué)術(shù)會(huì)議論文摘要集[C];2006年
9 王大珩;周立偉;;光學(xué),走向新的世紀(jì)[A];西部大開(kāi)發(fā) 科教先行與可持續(xù)發(fā)展——中國(guó)科協(xié)2000年學(xué)術(shù)年會(huì)文集[C];2000年
10 萬(wàn)明杰;王振林;;超薄介質(zhì)層包裹金屬核納米復(fù)合顆粒的熒光增強(qiáng)機(jī)制[A];第十七屆全國(guó)光散射學(xué)術(shù)會(huì)議摘要文集[C];2013年
相關(guān)重要報(bào)紙文章 前10條
1 記者 李愛(ài)珍;我省量子光學(xué)研究直達(dá)國(guó)際前沿[N];山西日?qǐng)?bào);2010年
2 記者 蘭炎平;山大量子光學(xué)實(shí)驗(yàn)室立足世界科技前沿[N];山西日?qǐng)?bào);2000年
3 本報(bào)記者 孟國(guó)旺 賈清華;打造量子光學(xué)研究的一流科研基地[N];山西科技報(bào);2012年
4 王海濱;山西躋身量子光學(xué)研究第一梯隊(duì)[N];中國(guó)技術(shù)市場(chǎng)報(bào);2010年
5 記者 冀衛(wèi)平;山大量子光學(xué)實(shí)驗(yàn)室成為國(guó)家重點(diǎn)實(shí)驗(yàn)室[N];山西日?qǐng)?bào);2001年
6 記者 冀衛(wèi)平;山西大學(xué)“量子光學(xué)與光量子器件”實(shí)驗(yàn)室進(jìn)入“國(guó)家隊(duì)”[N];山西日?qǐng)?bào);2002年
7 ;光電閃爍物理夢(mèng)[N];山西日?qǐng)?bào);2003年
8 本報(bào)記者 劉何健;量子光學(xué)的春天[N];江蘇科技報(bào);2005年
9 侯紅武 王世杰 李愛(ài)珍;彭X墀當(dāng)選中國(guó)科學(xué)院院士[N];山西日?qǐng)?bào);2003年
10 ;山西省科學(xué)技術(shù)杰出貢獻(xiàn)獎(jiǎng)獲獎(jiǎng)人彭X墀簡(jiǎn)介[N];山西日?qǐng)?bào);2005年
相關(guān)博士學(xué)位論文 前5條
1 孫恒信;光的橫向小位移的量子測(cè)量[D];山西大學(xué);2014年
2 王明皓;量子光學(xué)系統(tǒng)中的幾何相[D];山西大學(xué);2015年
3 尹淼;克爾非線性黑體中原子異常量子光學(xué)效應(yīng)的研究[D];華中科技大學(xué);2010年
4 周艷麗;基于量子光學(xué)原理的量子計(jì)算與量子模擬的理論研究[D];國(guó)防科學(xué)技術(shù)大學(xué);2012年
5 王福源;窄線寬非經(jīng)典光源的制備及性質(zhì)[D];中國(guó)科學(xué)技術(shù)大學(xué);2009年
相關(guān)碩士學(xué)位論文 前8條
1 周海軍;用于量子光學(xué)實(shí)驗(yàn)的Bell態(tài)探測(cè)器的設(shè)計(jì)調(diào)試[D];山西大學(xué);2014年
2 李欽政;弱值和弱測(cè)量在量子光學(xué)精密測(cè)量中理論研究[D];上海交通大學(xué);2015年
3 張虎;線性量子光學(xué)系統(tǒng)的反饋控制[D];電子科技大學(xué);2013年
4 鐘國(guó)寶;量子光學(xué)態(tài)的脊波變換[D];安徽大學(xué);2013年
5 周倩倩;用于量子光學(xué)實(shí)驗(yàn)的寬帶低噪聲探測(cè)器研制及應(yīng)用[D];山西大學(xué);2010年
6 黃波;線性量子光學(xué)系統(tǒng)的LQG相干控制[D];電子科技大學(xué);2011年
7 趙加強(qiáng);腔QED中若干量子光學(xué)與量子信息問(wèn)題的研究[D];曲阜師范大學(xué);2005年
8 桂傳友;變頻率輻射場(chǎng)對(duì)量子系統(tǒng)非經(jīng)典特性的調(diào)控[D];安徽大學(xué);2011年
,本文編號(hào):2154186
本文鏈接:http://sikaile.net/shoufeilunwen/jckxbs/2154186.html