量子光學(xué)中的算符Hermite多項(xiàng)式理論及其應(yīng)用
[Abstract]:The development of modern physics theory needn't be doubted to need advanced mathematics. Theoretical physicists should invent corresponding mathematics according to their own physical needs, display their unique way of thinking.Hermite polynomials as a special function, and have extensive applications in quantum mechanics and quantum optics. For example, the eigenstates of quantum harmonic oscillator. The wave function is described by the Hermite polynomials. The predicate of the special functions is that they have their special recursive law, and they are easy to be memorized by the set of.Hermite polynomials H_m (x), which constitute a complete orthogonal function space, and have a certain position in the field of mathematics and physics. This paper proposes the X sect of the Hermite polynomial (x is real) as a quantum force. The operator (coordinate operator X) is a substitute for the H_m (X) as the operator Hermite polynomial, because the operator in the quantum mechanics is generally not easy, so the ordering problem of the operator's special function itself is a new mathematical problem. We combine the integral techniques in the ordered operator to systematically study its various properties and give H_m (X) in the system. On the basis of the new characteristics of the operator sorting, some new operator identities can be derived. They have important applications in the construction of quantum optical state vectors. When the H_m (X) ordering rules are transitioning to the classical case, we get the generalized binomial theorem and some new parent functions of the Hermite multinomial H_m (x). Formula. The operator Hermite polynomial theory includes: 1. the new relation between various special functions can be found by the new formula of the special function of the operator..2. can derive a number of useful new integral formulas (but without real integral), the.3. can be used as a special operator, using the order forms of the special functions of the operator and the completeness of the quantum representation. Function identities rich quantum theory and transformation theory.4. more deeply establish the quantum correspondence of classical functions, help the development of quantum phase space theory,.5. find new power series expansion of some special functions and invert.6. convenient and direct calculation of various physical quantities, such as moment function, cumulative function and so on. This paper will also study The dual variable Hermite polynomials H_m, n (x, y) needed in quantum entanglement, the operator Hermite polynomial theory is generalized to the operator's double variable Hermite polynomial, and its properties and applications are studied. In this paper, the theory of the operator Hermite polynomial is constructed and discussed from physical concepts and physical requirements. The theory of the operator Hermite polynomials should be discussed smoothly. In the first chapter, the integral technique in the ordered operator invented by Chinese scholar Fan Hongyi is introduced. In the second, third chapter, the theory of the operator Hermite polynomial (single variable) is introduced, the core of which is the regular multiplication and the unconventional multiplication of the operator Hermite polynomials. The fourth chapter introduces how to derive Laguerre polynomials using the operator Hermite polynomial theory. In the past, they are considered respectively. The fifth chapter describes the physical application of the normal product Hn (X) = 2n: of the operator Hermite polynomials. The sixth chapter introduces the derivation of the Hn (Q's new binomial theorem) by the operator Hermite multinomial method. The seventh chapter The formula of the parent function of even and odd Hermite polynomial is derived by the operator Hermite polynomial method. From eighth chapters to the eleventh chapter, the way to introduce the dual variable Hermitee polynomial is introduced and the dual variable operator Hermite polynomial theory is established, and the new mother function formula is derived. In the twelfth chapter, the completeness of the Fock space can only be used in the past. How can the completeness spread in the mixed state? The results show that the Fock space can be divided into a mixed state (binomial state or negative binomial state). In a word, the operator Hermite polynomial theory and the new division of the Fock space have played an active role in further understanding the structure of the Fock space and enriching the connotation of the Fock space.
【學(xué)位授予單位】:中國科學(xué)技術(shù)大學(xué)
【學(xué)位級(jí)別】:博士
【學(xué)位授予年份】:2017
【分類號(hào)】:O431.2
【相似文獻(xiàn)】
相關(guān)期刊論文 前10條
1 李季,倪致祥;通用的角動(dòng)量階梯算符[J];大學(xué)物理;2000年07期
2 白音布和;仲志國;李根全;;量子力學(xué)中的超算符概念[J];南陽師范學(xué)院學(xué)報(bào);2011年03期
3 Jan G.-Mikusiński;櫘康;;論算符微積的基礎(chǔ)[J];數(shù)學(xué)進(jìn)展;1957年03期
4 程德仁;;算符演算在電路與系統(tǒng)分析中的應(yīng)用[J];電子測(cè)量技術(shù);1977年01期
5 陶潤康;指數(shù)算符的性質(zhì)及應(yīng)用[J];嘉興師專學(xué)報(bào);1983年S1期
6 范洪義,翁海光;P-表示為經(jīng)典位相的位相算符[J];量子電子學(xué);1992年03期
7 陳光巨,李玉學(xué);一種新的五原子體系內(nèi)坐標(biāo)形式的量子力學(xué)振轉(zhuǎn)動(dòng)能算符[J];中國科學(xué)(B輯);2000年01期
8 王肇慶,佘守憲,蘇惠惠;關(guān)于構(gòu)造階梯算符[J];大學(xué)物理;2000年04期
9 邊志華,周希堅(jiān);i銈 沆/(沆t)是算符嗎[J];大學(xué)物理;2000年08期
10 佘守憲,王肇慶,蘇惠惠;構(gòu)造階梯算符的定理及其應(yīng)用[J];大學(xué)物理;2001年01期
相關(guān)會(huì)議論文 前10條
1 周進(jìn)元;高漢賓;;強(qiáng)耦合體系脈沖實(shí)驗(yàn)的積算符描述[A];第五屆全國波譜學(xué)學(xué)術(shù)會(huì)議論文摘要集[C];1988年
2 周進(jìn)元;高漢賓;吳欽義;;高秩張量算符對(duì)多指數(shù)弛豫測(cè)量的影響[A];第六屆全國波譜學(xué)學(xué)術(shù)會(huì)議論文摘要集[C];1990年
3 孔祥銘;黃永仁;;弛豫計(jì)算中的積算符表示[A];第六屆全國波譜學(xué)學(xué)術(shù)會(huì)議論文摘要集[C];1990年
4 吳勇;徐漢濤;於昌榮;;逆算符方法在非線性振動(dòng)中的應(yīng)用[A];華東五省振動(dòng)工程學(xué)會(huì)第五屆學(xué)術(shù)交流會(huì)論文集[C];2001年
5 ;自旋結(jié)網(wǎng)圈表象中體積算符對(duì)高價(jià)頂角的作用[A];湖北省物理學(xué)會(huì)、武漢物理學(xué)會(huì)成立70周年慶典暨2002年學(xué)術(shù)年會(huì)論文集[C];2002年
6 劉愛琢;裴奉奎;;多脈沖NMR實(shí)驗(yàn)的多量子積算符描述[A];第五屆全國波譜學(xué)學(xué)術(shù)會(huì)議論文摘要集[C];1988年
7 龍姝明;孫彥清;徐暉;傅曉玲;;階梯算符方法在稀薄費(fèi)米氣體熱力學(xué)性質(zhì)研究中的應(yīng)用[A];中國數(shù)學(xué)力學(xué)物理學(xué)高新技術(shù)交叉研究學(xué)會(huì)第十二屆學(xué)術(shù)年會(huì)論文集[C];2008年
8 劉愛琢;裴奉奎;;磁等性自旋體系的乘積算符描述[A];第四屆全國波譜學(xué)學(xué)術(shù)會(huì)議論文摘要集[C];1986年
9 馬繼軍;葉朝輝;吳欽義;;積算符NMR矢量模型[A];第四屆全國波譜學(xué)學(xué)術(shù)會(huì)議論文摘要集[C];1986年
10 王士良;;論場(chǎng)和路的統(tǒng)一[A];中國電工技術(shù)學(xué)會(huì)第八屆學(xué)術(shù)會(huì)議論文集[C];2004年
相關(guān)博士學(xué)位論文 前10條
1 展德會(huì);量子光學(xué)中的算符Hermite多項(xiàng)式理論及其應(yīng)用[D];中國科學(xué)技術(shù)大學(xué);2017年
2 郭琴;用糾纏態(tài)表象和有序算符內(nèi)的積分方法發(fā)展量子力學(xué)相空間理論[D];上海交通大學(xué);2008年
3 李根全;量子物理中的非對(duì)易分析與超算符[D];吉林大學(xué);2004年
4 吳昊;量子力學(xué)中的不變本征算符方法及其應(yīng)用[D];中國科學(xué)技術(shù)大學(xué);2008年
5 牛金波;光學(xué)信號(hào)分析在量子力學(xué)中的研究進(jìn)展和量子層析技術(shù)[D];中國科學(xué)技術(shù)大學(xué);2012年
6 袁洪春;量子光學(xué)中算符編序理論進(jìn)展及其應(yīng)用[D];上海交通大學(xué);2011年
7 呂翠紅;用IWOP技術(shù)和糾纏態(tài)表象發(fā)展量子相空間理論[D];中國科學(xué)技術(shù)大學(xué);2011年
8 賀偉;AdS/CFT對(duì)偶中的Wilson loop算符[D];中國科學(xué)院研究生院(理論物理研究所);2008年
9 許業(yè)軍;量子力學(xué)表象新應(yīng)用及構(gòu)造的新方法[D];中國科學(xué)技術(shù)大學(xué);2011年
10 何銳;量子相空間分布函數(shù)在幾種量子通道中的演化[D];中國科學(xué)技術(shù)大學(xué);2014年
相關(guān)碩士學(xué)位論文 前10條
1 尋大毛;軌道角動(dòng)量量子數(shù)的升降算符[D];湖南大學(xué);2010年
2 賈繼瑩;Koopman算符在一些動(dòng)力系統(tǒng)中的算法和應(yīng)用研究[D];清華大學(xué);2015年
3 汪志龍;單模壓縮菲涅爾算符的探究及其在量子信息中的應(yīng)用[D];江西師范大學(xué);2016年
4 榮小平;對(duì)球面上含N×L項(xiàng)算符的代數(shù)分析[D];湖南大學(xué);2010年
5 賴玫玫;約束在彎曲曲面上運(yùn)動(dòng)的粒子動(dòng)量和動(dòng)能算符[D];湖南大學(xué);2007年
6 肖艷萍;約束引起的算符次序問題及其解決[D];湖南大學(xué);2005年
7 展德會(huì);算符厄米多項(xiàng)式的若干恒等式及其應(yīng)用[D];中國科學(xué)技術(shù)大學(xué);2011年
8 張志軍;量子信息實(shí)驗(yàn)設(shè)計(jì)的算符表達(dá)[D];華東師范大學(xué);2004年
9 申楊;幾何動(dòng)量與二維球面上湮滅算符的關(guān)系研究[D];湖南大學(xué);2014年
10 沈堯;Gentile統(tǒng)計(jì)的算符實(shí)現(xiàn)及應(yīng)用[D];天津大學(xué);2007年
,本文編號(hào):2142415
本文鏈接:http://sikaile.net/shoufeilunwen/jckxbs/2142415.html