DNA復(fù)制叉重啟相關(guān)蛋白DnaT-ssDNA復(fù)合物結(jié)構(gòu)和功能研究
[Abstract]:In the process of biological evolution, in order to meet the needs of different functions, a variety of protein patterns with different structural features and can be identified and combined with ssDNA have been developed to better accomplish the important mission they have been given. The classic domains of protein that can be combined with ssDNA, including OB folds, KH domains, RNA reco, have been found. Gnition motifs (RRMs), RecA-like domain, whirly domain, and recently reported DrpA domain, and so on. The high fidelity replication of the genetic material in the life body requires precise coordination and regulation of chromosomes, which is essential for the correct assembly of the replicas, and the initiator is a subcomposition of the replicator at the starting site of the replicator. The exact assembly is also regulated by a variety of mechanisms. The initiator consists of a number of proteins, such as a helicase, an initiating enzyme, and a number of associated auxiliary cohesions, which are required by the RNA primers for the replication of ssDNA as a template for the replication of the DNA. The replication of body and the restart of stagnant replication fork lay the foundation.
DnaT, one of the body proteins triggered by E. coli, plays an important role in reopening the stagnant replication fork. As a cohesive protein, DnaT is associated with the PriA-PriB-ssDNA three element complex and DnaB/C complex, which mediates a complete PriA dependent initiator assembly, and also has a mechanism for replicating the replication fork after the DNA is damaged. But in this study, we have analyzed the protein DnaT and single strand deoxyribonucleic acid fragment ssDN in this study. In this study, the structural biological study of the combination of DnaT protein with ssDNA and the interaction between DnaT protein and PriB is still blank. In this study, we analyzed the protein DnaT and single strand deoxyribonucleic acid fragment ssDN by means of X ray crystallography. Three crystal structures of the two binding states of the A complex, the resolution is 1.96A and 2.83A, and the crystal structure of the seleno protein crystal 2.08A. complex. The DnaT protein is coiled on ssDNA with a spiral fiber structure. The DnaT protein is combined with ssDNA in a base-inward mode, and each of the three helix bundle domains is combined with two bases. Oxygen nucleotides. By comparing with the sequence of homologous DnaT proteins, it is found that DnaT84-153 mainly identifies the base parts of ssDNA through conservative a2helix, and through the interaction of L3loop and the alpha 3helix stable protein with the phosphoric acid skeleton. At the same time, the DnaT protein uses a multi domain synergistic model to combine the substrate ssDNA to better complete the corresponding. The biological function of this protein folding pattern and the combination of the three spiral beam pattern domain with ssDNA has not been reported before. Therefore, the crystal structure model of the DnaT84-153-dT15ssDNA complex reveals a novel pattern of combining the three spiral beam pattern domain with ssDNA.
In view of the only observed DnaT84-153 fragments in the composite structure, the N end and C end of the DnaT protein were found to play an important role in improving the synergism of DnaT bound ssDNA by analyzing the binding ability of DnaT84-179, DnaT84-153 and full length DnaT protein on the ssDNA binding ability of different length fragments. SsDNA with different sequences has no sequence recognition specificity.
The results of substrate binding assay and electron microscopy negative staining showed that DnaT could form a rod like nucleoprotein fiber structure on its physiological substrate phiX-174ssDNA. We speculate that DnaT plays the role of scaffolding in the process of PriA- dependent initiator assembly and restarting the stagnant replication fork, providing a platform for subsequent biological processes. With the combination of the results and the relevant articles, we present a model for how the DnaT protein plays its functions during the initiation of PriA- dependent initiator assembly and replication forks.
【學(xué)位授予單位】:中國科學(xué)技術(shù)大學(xué)
【學(xué)位級別】:博士
【學(xué)位授予年份】:2015
【分類號】:Q51
【共引文獻(xiàn)】
相關(guān)期刊論文 前10條
1 歐植澤;陳晨;高云燕;曹璐;劉桂霞;李慧珍;;色胺修飾竹紅菌素及其稀土離子配位聚合物與DNA相互作用研究[J];影像科學(xué)與光化學(xué);2013年05期
2 陳海偉;楊靜茹;;端粒和端粒酶與癌癥發(fā)生和治療的關(guān)系研究進(jìn)展[J];赤峰學(xué)院學(xué)報(自然科學(xué)版);2014年19期
3 陽仲斌;李偉;金晨鐘;吳娟;曾智;王艷;張雪嬌;胡軍和;;SCMC調(diào)控早期胚胎發(fā)育機(jī)制的研究進(jìn)展[J];安徽農(nóng)業(yè)科學(xué);2015年13期
4 黃雪英;雷明;沈陽;張巍;劉艷麗;劉珂;趙浩斌;祁超;;采用X射線衍射解析人鳥嘌呤核苷酸解離刺激因子(RalGDS)Ras結(jié)合結(jié)構(gòu)域的空間結(jié)構(gòu)[J];分析化學(xué);2015年06期
5 劉霖;胡大春;;端粒、端粒酶基因及其突變在肝癌發(fā)生發(fā)展中的研究進(jìn)展[J];國際檢驗(yàn)醫(yī)學(xué)雜志;2015年12期
6 REN Jun;WANG Jue;WANG ZhiXin;WU JiaWei;;Structural and biochemical insights into the homotypic PB1-PB1 complex between PKCζ and p62[J];Science China(Life Sciences);2014年01期
7 MEI KunRong;JIN Zhe;REN FangLi;WANG YinYing;CHANG ZhiJie;WANG XinQuan;;Structural basis for the recognition of RNA polymerase II C-terminal domain by CREPT and p15RS[J];Science China(Life Sciences);2014年01期
8 SONG Wen;HAN ZhiFu;SUN YaDong;CHAI JiJie;;Crystal structure of a plant leucine rich repeat protein with two island domains[J];Science China(Life Sciences);2014年01期
9 CHEN BaoEn;GAN JianHua;YANG CaiGuang;;The complex structures of ALKBH2 mutants cross-linked to dsDNA reveal the conformational swing of β-hairpin[J];Science China(Chemistry);2014年02期
10 閆娟枝;朱苗力;;1H-1,2,4-三唑-3,5-二羧酸鋅的合成、表征及晶體結(jié)構(gòu)研究[J];化學(xué)研究與應(yīng)用;2013年12期
相關(guān)博士學(xué)位論文 前10條
1 王虹;真核生物AU-rich元件結(jié)合蛋白HuR和GAPDH3的結(jié)構(gòu)功能研究[D];中國科學(xué)技術(shù)大學(xué);2013年
2 羅曉秋;廣西巴馬地區(qū)壯族長壽家系口腔粘膜細(xì)胞端粒長度的研究[D];廣西醫(yī)科大學(xué);2013年
3 王艷;中年女性體力活動與端粒體的相關(guān)性及“萬步行”干預(yù)效果的研究[D];北京體育大學(xué);2013年
4 張嶺;IRAS基因敲除小鼠的構(gòu)建及相互作用蛋白的篩選[D];中國人民解放軍軍事醫(yī)學(xué)科學(xué)院;2013年
5 彭蓉;埃及伊蚊(Aedes aegypti)甾醇載體蛋白-2的生理功能及轉(zhuǎn)錄調(diào)控研究[D];華中師范大學(xué);2013年
6 王寧;海洋微生物中變形菌視紫紅質(zhì)(Proteorhodopsin)結(jié)構(gòu)和功能的研究[D];南京農(nóng)業(yè)大學(xué);2011年
7 江永亮;肺炎鏈球菌Ap_nA水解酶SapH和酵母Ap_4A磷酸化酶Apa2的結(jié)構(gòu)酶學(xué)研究[D];中國科學(xué)技術(shù)大學(xué);2012年
8 郭鵬超;酵母醌氧化還原酶Zta1和巰基氧化酶Erv1的結(jié)構(gòu)與催化機(jī)理研究[D];中國科學(xué)技術(shù)大學(xué);2012年
9 萬小波;蛋白激酶小分子抑制劑選擇性及其JAK2激酶調(diào)控機(jī)制的計(jì)算化學(xué)研究[D];北京協(xié)和醫(yī)學(xué)院;2013年
10 張巍;人體內(nèi)2種表觀遺傳修飾識別蛋白和2種支架蛋白的結(jié)構(gòu)研究[D];華中師范大學(xué);2013年
相關(guān)碩士學(xué)位論文 前10條
1 馬登旭;水稻端粒酶RNA候選序列的克隆及特征研究[D];浙江理工大學(xué);2013年
2 鄭潔;玉米端粒酶RNA模板基因候選序列的克隆鑒定[D];浙江理工大學(xué);2013年
3 韋敬航;人端粒酶RNA模板定點(diǎn)突變對腫瘤細(xì)胞Bcap-37的作用研究[D];浙江理工大學(xué);2013年
4 任靂君;三聯(lián)吡啶Pt(Ⅱ)配合物與四鏈體DNAs的相互作用及體外生物活性研究[D];山西大學(xué);2013年
5 沈翔;極端嗜熱菌金屬蛋白酶TTHA1264,TTHA1265復(fù)合體的晶體結(jié)構(gòu)研究[D];南京農(nóng)業(yè)大學(xué);2011年
6 高瑞娜;近紅外BODIPY及菁染料的合成與性質(zhì)研究[D];河南大學(xué);2013年
7 楊明坤;端粒酶與大鼠脊髓損傷后髓內(nèi)瘢痕相關(guān)性實(shí)驗(yàn)研究[D];新疆醫(yī)科大學(xué);2013年
8 徐君;皖江白鵝Smad9基因遺傳特性及其與產(chǎn)蛋性能的相關(guān)性研究[D];安徽師范大學(xué);2013年
9 王丹;一個新的TPP1相互作用蛋白OTUB1參與端粒長度調(diào)節(jié)的作用研究[D];中山大學(xué);2013年
10 莫曉婷;玉米逆境相關(guān)轉(zhuǎn)錄因子的克隆與初步分析[D];中國農(nóng)業(yè)科學(xué)院;2013年
,本文編號:2125570
本文鏈接:http://sikaile.net/shoufeilunwen/jckxbs/2125570.html