基于GNSS信噪比數(shù)據(jù)的測(cè)站環(huán)境誤差處理方法及其應(yīng)用研究
[Abstract]:Global Navigation Satellite System (GNSS) is widely used in geodetic survey, geodynamics, earthquake and geological disaster, deformation monitoring and other fields of engineering and engineering, which has greatly promoted the development and application of Surveying and mapping technology for its all-weather, high precision, automation, high efficiency and so on. With the wider and deeper application of GNSS technology, the demand for high precision GNSS measurement is increasing. The various error processing of GNSS measurement has also been paid more and more attention to the influence of three types of error sources on the source of.GNSS signals from the source: error related to the satellite, error related to the signal propagation and reception Error related to machines. Errors related to satellite and receiver hardware include clock difference, antenna phase deviation, orbit error, hardware delay, observation noise, and so on; errors in the process of signal propagation include space environment (ionosphere, troposphere, etc.) propagation error and ground station ring boundary (multipath reflection, surface vegetation, antenna snow, water vapor and fire) For the ionosphere, the troposphere and the satellite clock difference, most of the GNSS positioning errors can be eliminated or weakened by establishing the system error model, the parameter estimation or the difference technique. For the multi path and the antenna snow, the environmental errors of the ground stations are due to their complex local characteristics and weak spatial correlation. There is no effective correction model or widely applicable data processing method at present. The change of ground station environment will cause the change of signal intensity, polarization, propagation direction and path, thus causing location error. For example, the influence of the carrier phase path of the geodesic GNSS receiver is about centimeter, and in the water surface observation environment The maximum effect of the pseudo distance multipath error is up to 7 meters, and the effect of the receiver antenna snow on the plane and elevation direction of the precise single point positioning PPP is several centimeters or even larger. The errors caused by these ground station environments are sufficient to directly affect the positioning of precision navigation, precision change monitoring, structural vibration monitoring and seismic iseismic points. The accuracy and reliability of analysis have become the main source of error and key factors to restrict high precision positioning and its application. In the application of GNSS seismic analysis with high sampling rate (above 1Hz), the location accuracy of seismic analysis is influenced by the overlapping of the multipath error and the seismic frequency and the accuracy of the seismic analysis. In many areas of the world, GNSS continuous operating stations applied to global geophysical research are inevitably affected by the harsh environment such as ice and snow, and lead to significant positional errors. How to effectively extract or eliminate the influence of environmental errors in multi path observation stations is a hot research hotspot in the world in recent years to provide pseudo range and load. The signal to noise ratio (Signal-to-noise Ratio, SNR) is also provided to measure the quality of the received signal. The signal-to-noise ratio is an important indicator of the quality of the GNSS receiving signal. It contains the observation quality information, and is sensitive to the observation environment of the station, the size of the signal to noise ratio and the change of the station week. Environmental factors such as season, temperature, soil moisture, snow and so on are closely related. Because the GNSS signal-to-noise ratio data have unique utilization value in observation quality assessment, construction of random model and Station Environmental error processing, the research and application of GNSS signal to noise ratio data are becoming more and more concerned. In GNSS precision positioning, it is considered as a multipath error of GNSS signal noise, which contains useful information about the surrounding environment of the station, which is closely related to the multi path reflection environment. Soil moisture, vegetation and snow cover will cause the change of the ground reflector specificity, and the multipath reflection letter received by the antenna. The signal is effectively reflected, causing the change of the characteristic parameters such as the frequency, amplitude and phase of the signal to noise ratio. Through these SNR characteristic parameters, the mapping relation between the multi path reflection signal and the soil moisture and other environmental parameters is established to realize the inversion of the environmental parameters. The snow, the soil and the vegetation moisture are indispensable in the land water cycle. Important components have important influence on the whole climate and ecosystem, and their dynamic changes are closely related to the environment and climate. In recent years, the GNSS remote sensing technology based on the multipath effect has provided a new and efficient monitoring method for soil moisture, snow thickness and vegetation growth. GNSS continuous station network has further expanded the field of GNSS research and application, and forms complementary and verification with other means. It has a broad application prospect. In this paper, the relationship between the measuring station environment error model and space-time characteristics, the relationship between the SNR data and the observation environment of the station and the response and so on are deeply analyzed. Based on this, the base is studied. The method of detection, extraction and correction of station environment error of GNSS signal to noise ratio data, and the application of SNR observation value in soil moisture inversion are discussed. The main research work and results are as follows: 1. system, the physical mechanism of GNSS multipath environmental error, the model and its temporal and spatial characteristics, combined with the simulation and measured GNSS The time frequency characteristics of multi-path environmental errors in the observed and coordinate domains are studied. The results show that the multi path environment error has the time domain repetition feature and the repetition period is about 236s; the multipath environment error has a certain range, and the pseudo range multipath error is not more than 1 bit width, and the phase multipath error is incorrect. The difference is not more than the 1/4 carrier wavelength, and the multipath environmental error also has a certain energy concentration range in the frequency domain. These time frequency features provide a theoretical basis for the separation and extraction of Station Environmental errors by using digital signal processing methods. In addition, the signal to noise ratio model and its characteristics under the multi path reflection ring are discussed in detail, and the analysis is also analyzed. The influence of environmental factors such as soil moisture, ground vegetation, snow and temperature change on the signal-to-noise ratio observation value. The correlation between the signal to noise ratio observation value and the station environment provides a theoretical basis for using SNR data to deal with environmental errors and to inverse the environmental parameters of the station. The multi path of the GNSS signal to noise ratio observation value and the carrier phase multipath is discussed. The relationship between the error and the carrier phase multipath error correction algorithm based on the SNR data is realized, and the measured data are used to analyze the residual error of the LC ionospheric combined observation. The results show that the multipath error in the carrier phase observation value can be corrected by SNR to a certain extent, and the accuracy.LC view of the positioning solution is improved. The energy of the measured residual is mainly concentrated in the low frequency range of 0.0001-0.0005Hz, and the characteristic frequency interval of the multi-path environmental error is more consistent..3. proposes an algorithm based on the SNR observation value to detect the abnormal value of the coordinate sequence of the GNSS site, which is based on the SNR value to identify the corresponding rough difference in the position time sequence and make the algorithm correction. The algorithm is verified and analyzed by the observational data of the Plate boundary observation (PBO) GPS site. The correction results of the anomaly detection algorithm show that the RMS value of the best linear fitting of the coordinate sequence is reduced to 0 from the corrected 0.29cm, 0.16cm and 1.67cm (E, N, V) before the correction of the linear tectonic movement of the site. .12cm, 0.11cm and 0.44cm, the accuracy of the location estimation of the site after the algorithm corrections can effectively improve the function of.4. to study the function description model of the GNSS signal to noise ratio multipath interference inversion of soil moisture, and discuss the quality of the signal to noise ratio data and the selection strategy and the determination of the effective inversion area. In this paper, a GNSS soil moisture inversion program based on Matlab platform is presented in this paper, which combines the soil moisture inversion based on the GNSS multipath phase. The results of the inversion are compared and analyzed using the simulated simulation and the field measured soil moisture data, and the correlation between the multipath phase and the soil moisture is quantitatively described. It is shown that the effective inversion area of soil moisture is a group of ellipses with high antenna, high angle and azimuth of the satellite. The selection of the L2 band advanced satellite and the SNR data that conforms to the multi path reflection model are more beneficial to the humidity inversion, and the SNR phase provides an important induction index for the soil moisture inversion and the monitoring of soil moisture change trend. The exponential function can describe the mapping relationship between the delay phase and the soil moisture content well..5. takes into account the short time changes of the factors such as season, weather, vegetation, slope and other factors on the SNR phase parameters. A method of estimating soil moisture based on the sliding time window is proposed. The sliding time window is used to predict the time window respectively. 3 methods, such as the sliding time window interpolation and other methods, are used to inverse the soil moisture and to compare and analyze the results of the inversion. The mean values of the correlation coefficients of the 3 methods are 0.717,0.832 and 0.952., respectively, and the window based interpolation and prediction methods are up 16.2% and 32.9% respectively, and the error L1 norm drops respectively. 39.8% and 62%, the error L2 norm decreased by 17.4% and 54.6%. results show: compared to the soil moisture inversion method of the whole time view measurement construction model, using the time window modeling inversion of soil moisture can effectively simulate the short time invariable station reflection environment, thus improving the inversion accuracy; the window based interpolation method can be used The error is reduced to the ideal effect, but it can not realize the near real-time prediction of soil moisture; the accuracy of the window based prediction method is slightly lower than the interpolation result, but it can be used in the near real-time application.
【學(xué)位授予單位】:中國(guó)地質(zhì)大學(xué)
【學(xué)位級(jí)別】:博士
【學(xué)位授予年份】:2016
【分類號(hào)】:P228.4
【相似文獻(xiàn)】
相關(guān)期刊論文 前10條
1 閆娜;;江蘇省GNSS連續(xù)運(yùn)行參考站網(wǎng)項(xiàng)目通過(guò)驗(yàn)收[J];測(cè)繪通報(bào);2007年02期
2 ;獲境外專業(yè)機(jī)構(gòu)青睞,合眾思?jí)迅呔獹NSS產(chǎn)品邁入世界前列[J];北京測(cè)繪;2007年02期
3 ;中國(guó)GNSS技術(shù)打破歐美壟斷高精度測(cè)量產(chǎn)品角逐國(guó)際市場(chǎng)[J];江西測(cè)繪;2007年02期
4 ;合眾思?jí)勋@海外定單標(biāo)志中國(guó)GNSS踏上自主創(chuàng)新成果產(chǎn)業(yè)化之路[J];現(xiàn)代測(cè)繪;2007年04期
5 ;十年中海達(dá) 中國(guó)GNSS產(chǎn)業(yè)化十年——中海達(dá)10周年慶典活動(dòng)拉開序幕[J];測(cè)繪技術(shù)裝備;2009年03期
6 楊永平;段德磊;;多功能手持GNSS在電力行業(yè)的應(yīng)用[J];電力與電工;2009年03期
7 薄萬(wàn)舉;黃立人;李軍;程增杰;宋兆山;許明元;李文靜;李文一;;GNSS野外檢定場(chǎng)[J];測(cè)繪科學(xué);2009年S1期
8 季宇虹;王讓會(huì);;全球?qū)Ш蕉ㄎ幌到y(tǒng)GNSS的技術(shù)與應(yīng)用[J];全球定位系統(tǒng);2010年05期
9 董春來(lái);周立;史建青;;GNSS多功能實(shí)驗(yàn)室的構(gòu)建與實(shí)踐[J];實(shí)驗(yàn)室研究與探索;2011年02期
10 Zhan Wei;Zhu Shuang;Yang Bo;Wu Yanqiang;Liu Zhiguang;Meng Xiangang;;Effects of the differences between the ITRF2000 and ITRF2005 models in GNSS data processing[J];Geodesy and Geodynamics;2013年04期
相關(guān)會(huì)議論文 前10條
1 張慧君;李孝輝;;GNSS系統(tǒng)時(shí)間偏差及其監(jiān)測(cè)與預(yù)報(bào)[A];2009全國(guó)時(shí)間頻率學(xué)術(shù)會(huì)議論文集[C];2009年
2 ;Supporting capability analysis of present spectrum management resources to GNSS IDM in China[A];第三屆中國(guó)衛(wèi)星導(dǎo)航學(xué)術(shù)年會(huì)電子文集——S01北斗/GNSS導(dǎo)航應(yīng)用[C];2012年
3 朱旭;;全球?qū)Ш叫l(wèi)星系統(tǒng)(GNSS)在空中交通管理中的應(yīng)用進(jìn)展[A];中國(guó)通信學(xué)會(huì)第六屆學(xué)術(shù)年會(huì)論文集(上)[C];2009年
4 董紹武;;GNSS時(shí)間系統(tǒng)及其互操作[A];2009全國(guó)虛擬儀器大會(huì)論文集(二)[C];2009年
5 孫曉波;李冶天;;多模GNSS高精度授時(shí)在電力系統(tǒng)中的應(yīng)用分析[A];經(jīng)濟(jì)發(fā)展方式轉(zhuǎn)變與自主創(chuàng)新——第十二屆中國(guó)科學(xué)技術(shù)協(xié)會(huì)年會(huì)(第四卷)[C];2010年
6 胡曉;高偉;李本玉;;GNSS衛(wèi)星導(dǎo)航系統(tǒng)關(guān)鍵技術(shù)的研究與思考[A];《測(cè)繪通報(bào)》測(cè)繪科學(xué)前沿技術(shù)論壇摘要集[C];2008年
7 高井祥;閆文林;王堅(jiān);;礦山變形災(zāi)害GNSS現(xiàn)代化監(jiān)測(cè)技術(shù)研究[A];《測(cè)繪通報(bào)》測(cè)繪科學(xué)前沿技術(shù)論壇摘要集[C];2008年
8 馬利華;韓延本;;全球衛(wèi)星導(dǎo)航系統(tǒng)(GNSS)概述[A];中國(guó)地球物理學(xué)會(huì)第二十三屆年會(huì)論文集[C];2007年
9 ;A study of ionospheric scintillation effects on Differential GNSS[A];第三屆中國(guó)衛(wèi)星導(dǎo)航學(xué)術(shù)年會(huì)電子文集——S08衛(wèi)星導(dǎo)航模型與方法[C];2012年
10 甄衛(wèi)民;韓超;杜黎明;陳麗;;我國(guó)GNSS開放服務(wù)中的干擾檢測(cè)與減緩計(jì)劃[A];第三屆中國(guó)衛(wèi)星導(dǎo)航學(xué)術(shù)年會(huì)電子文集——S01北斗/GNSS導(dǎo)航應(yīng)用[C];2012年
相關(guān)重要報(bào)紙文章 前10條
1 王娜;我GNSS技術(shù)打破國(guó)外壟斷[N];科技日?qǐng)?bào);2007年
2 陶渝;重慶建成國(guó)土資源GNSS網(wǎng)絡(luò)信息系統(tǒng)[N];中國(guó)測(cè)繪報(bào);2011年
3 記者 謝必如 特約記者 白文起 通訊員 陶渝;重慶建成國(guó)土資源GNSS網(wǎng)絡(luò)系統(tǒng)[N];中國(guó)國(guó)土資源報(bào);2011年
4 王巖;包頭用GNSS管理市政布局[N];中國(guó)建設(shè)報(bào);2010年
5 甘勃;“天眼”邁進(jìn)GNSS時(shí)代[N];大眾科技報(bào);2007年
6 王立彬;中國(guó)全球衛(wèi)星導(dǎo)航系統(tǒng),奪下千萬(wàn)美元大單[N];新華每日電訊;2007年
7 通訊員 彭祥榮;“陸態(tài)網(wǎng)”民勤GNSS基準(zhǔn)站投入試運(yùn)行[N];中國(guó)氣象報(bào);2010年
8 記者 裴蕾;測(cè)繪氣象共建GNSS基準(zhǔn)站[N];四川日?qǐng)?bào);2010年
9 王雅麗;實(shí)施國(guó)際化戰(zhàn)略[N];中國(guó)測(cè)繪報(bào);2010年
10 記者 張敏霞 通訊員 王存林;陸態(tài)網(wǎng)沱沱河GNSS基準(zhǔn)站建成并試運(yùn)行[N];格爾木日?qǐng)?bào);2011年
相關(guān)博士學(xué)位論文 前10條
1 江鵬;地基GNSS探測(cè)2D/3D大氣水汽分布技術(shù)研究[D];武漢大學(xué);2014年
2 徐韶光;利用GNSS獲取動(dòng)態(tài)可降水量的理論與方法研究[D];西南交通大學(xué);2014年
3 李磊;基于GNSS的電離層總電子含量的預(yù)測(cè)與應(yīng)用研究[D];大連海事大學(xué);2015年
4 陳良;機(jī)載GNSS/SINS組合精密導(dǎo)航關(guān)鍵技術(shù)研究[D];國(guó)防科學(xué)技術(shù)大學(xué);2013年
5 郭瑤;慣性輔助的高動(dòng)態(tài)GNSS基帶信號(hào)跟蹤技術(shù)[D];國(guó)防科學(xué)技術(shù)大學(xué);2013年
6 張亮;地面復(fù)雜環(huán)境下移動(dòng)三維測(cè)量精度改善方法研究[D];武漢大學(xué);2015年
7 甘雨;GNSS/INS組合系統(tǒng)模型精化及載波相位定位測(cè)姿[D];解放軍信息工程大學(xué);2015年
8 李俊毅;GNSS動(dòng)態(tài)相對(duì)定位算法研究[D];解放軍信息工程大學(xué);2013年
9 任燁;多場(chǎng)景下的GNSS完好性監(jiān)測(cè)方法研究[D];中國(guó)科學(xué)院研究生院(國(guó)家授時(shí)中心);2016年
10 陳華;基于原始觀測(cè)值的GNSS統(tǒng)一快速精密數(shù)據(jù)處理方法[D];武漢大學(xué);2015年
相關(guān)碩士學(xué)位論文 前10條
1 劉成;GNSS-R應(yīng)用于測(cè)量表層土壤濕度及軟件設(shè)計(jì)[D];中國(guó)地質(zhì)大學(xué)(北京);2015年
2 高榮祥;基于GNSS信號(hào)的無(wú)源雷達(dá)目標(biāo)探測(cè)研究[D];中國(guó)地質(zhì)大學(xué)(北京);2015年
3 陳聞亞;基于Internet的GNSS高精度位置服務(wù)平臺(tái)研究與實(shí)現(xiàn)[D];西南交通大學(xué);2015年
4 楊晨云鸝;GNSS在地震矩反演中的應(yīng)用研究[D];西南交通大學(xué);2015年
5 張U,
本文編號(hào):2124188
本文鏈接:http://sikaile.net/shoufeilunwen/jckxbs/2124188.html