廣義熱力學(xué)理論及其在壓縮機(jī)補氣中的應(yīng)用研究
本文選題:廣義熱力學(xué) + 廣義熱力學(xué)溫度; 參考:《浙江大學(xué)》2017年博士論文
【摘要】:經(jīng)過百年的理論發(fā)展和眾多的工程實踐,經(jīng)典熱力學(xué)已經(jīng)證明其可靠性,但是對于熱力學(xué)中的的一些基本概念及其意義仍存在著一些不同的理解。比如溫度和熱量的定義纏繞問題和熵在溫度趨向于0K時的極限值問題,弄清這些問題對熱力學(xué)發(fā)展有積極的意義。長距離運輸天然氣存在著壓力損耗的現(xiàn)象。LNG是一種高質(zhì)量的冷能,補氣壓縮機(jī)是一種非?煽康墓(jié)能技術(shù)。本文提出利用LNG補氣提高天然氣壓氣機(jī)效率,這對節(jié)能減排有重大意義。依據(jù)本文提出的溫?zé)崂p繞現(xiàn)象,本文認(rèn)為熱力學(xué)溫度不唯一。在經(jīng)典熱力學(xué)的基礎(chǔ)上,通過嚴(yán)格的數(shù)學(xué)推導(dǎo),定義了新的、更為普適的溫度和熱量概念,將它們命名為廣義熱力學(xué)溫度和廣義熱量。以此為基礎(chǔ),定義了廣義熵、廣義熱力學(xué)能等物理量。證明了經(jīng)典熱力學(xué)中的相應(yīng)概念僅僅是廣義熱力學(xué)的一個特例,廣義熱力學(xué)遵守經(jīng)典熱力學(xué)的基本規(guī)律和定理。并在新概念下重新闡述了熱力學(xué)三大定律,將其推廣以適應(yīng)到廣義熱力學(xué)體系下語境。通過廣義熱力學(xué)體系,證明了當(dāng)熱力學(xué)溫度趨向于0K時,任何物質(zhì)的熱力學(xué)熵趨向于0,即熵具有積分起點。解決了困擾已久的熵的最小極限問題以及熱力學(xué),甚至化學(xué)和物理上的諸多計算的基礎(chǔ)問題。在此基礎(chǔ)上,定義了廣義熱力學(xué)體系下絕對熵的概念,定義并命名了新的物理量——火羈(TS),推導(dǎo)了火羈的變換公式,初步探討了火羈的意義,證明了廣義熵產(chǎn)定律。證明了廣義熱力學(xué)各參數(shù)的二維全微分關(guān)系。給出了廣義熱力學(xué)特性函數(shù)的關(guān)系以及相同和不同廣義熱力學(xué)系下的麥克斯韋關(guān)系式。給出了比熱容、焦耳湯普遜系數(shù)等物性參數(shù)的變換關(guān)系和計算方法。給出了廣義熵、廣義熱力學(xué)能和廣義焓的微分表達(dá)式,研究了不同廣義熱力學(xué)系下的矩陣變換關(guān)系式。給出了廣義熱力學(xué)系下的熵、火羈、熱力學(xué)能、焓、自由能、自由焓和火積的積分表達(dá)式。本文提出利用液氮補氣渦旋壓縮機(jī)過程來模擬LNG補氣天然氣壓縮機(jī)。介紹了渦旋壓縮機(jī)的基本結(jié)構(gòu)、工作原理和幾何結(jié)構(gòu)。給出了渦旋壓縮機(jī)性能參數(shù)的計算方法,廣義熱力學(xué)體系下渦旋壓縮機(jī)的過程控制方程,以及補氣渦旋壓縮機(jī)內(nèi)部三段壓縮的熱力學(xué)過程分析。采用廣義熱力學(xué)原理分析了渦旋壓縮機(jī)補氣壓縮過程中的絕熱指示效率和補氣壓力以及相對流量比之間的關(guān)系,得出了絕熱指示效率最大的工況。分析計算了渦旋壓縮機(jī)壓縮過程的廣義熱量和廣義焓的變化;定義了廣義焓指示效率、廣義吸熱指示效率、廣義自由焓指示效率和廣義火羈指示效率。證明了廣義熱力學(xué)也可以用于實際的過程分析。
[Abstract]:After a hundred years of theoretical development and numerous engineering practices, classical thermodynamics has proved its reliability, but there are still some different understandings of some basic concepts and their meanings in thermodynamics. For example, the problem of the definition of temperature and heat and the limit value of entropy when the temperature tends to be 0 K, it is of positive significance to understand these problems for the development of thermodynamics. LNG is a kind of high quality cold energy, and gas supply compressor is a very reliable energy saving technology. In this paper, the use of LNG gas supply to improve the efficiency of natural gas compressor, which is of great significance for energy saving and emission reduction. According to the thermo-thermal winding phenomenon proposed in this paper, it is considered that the thermodynamic temperature is not unique. On the basis of classical thermodynamics, a new and more general concept of temperature and heat is defined by strict mathematical derivation, which is named generalized thermodynamics temperature and generalized heat. On this basis, generalized entropy, generalized thermodynamic energy and other physical quantities are defined. It is proved that the corresponding concepts in classical thermodynamics are only a special case of generalized thermodynamics, and that generalized thermodynamics obeys the basic laws and theorems of classical thermodynamics. The three laws of thermodynamics are restated under the new concept and generalized to fit the context of the generalized thermodynamic system. Through the generalized thermodynamic system, it is proved that when the thermodynamic temperature tends to 0 K, the thermodynamic entropy of any matter tends to 0, that is, the entropy has an integral starting point. The problem of the minimum limit of entropy and the basic problems of thermodynamics, even chemistry and physics are solved. On this basis, the concept of absolute entropy in the generalized thermodynamic system is defined, a new physical quantity, fire restraint (TS) is defined and named, the transformation formula of fire restraint is derived, the significance of fire restraint is preliminarily discussed, and the law of generalized entropy production is proved. The two-dimensional total differential relation of the parameters of generalized thermodynamics is proved. The relation of generalized thermodynamic characteristic function and Maxwell's relation under the same and different generalized thermodynamic systems are given. The transformation relation and calculation method of physical parameters such as specific heat capacity, Joule Thomson coefficient and so on are given. The differential expressions of generalized entropy, generalized thermodynamic energy and generalized enthalpy are given, and the matrix transformation relations under different generalized thermodynamic systems are studied. The integral expressions of entropy, fire restraint, thermodynamic energy, enthalpy, free energy, free enthalpy and fire product under the generalized thermodynamic system are given. This paper presents a simulation of LNG gas supply natural gas compressor by using liquid nitrogen to replenish gas scroll compressor. The basic structure, working principle and geometric structure of scroll compressor are introduced. The calculation method of the performance parameters of the scroll compressor, the process control equation of the scroll compressor under the generalized thermodynamic system, and the thermodynamic process analysis of the internal three-stage compression of the gas supply scroll compressor are given. The relationship between the adiabatic indicating efficiency, the gas supply pressure and the relative flow ratio in the compression process of the scroll compressor is analyzed by using the generalized thermodynamic principle, and the maximum adiabatic indicating efficiency is obtained. The variation of generalized heat and generalized enthalpy in the compression process of scroll compressor is analyzed and calculated, and the general enthalpy indicating efficiency, generalized endothermic indicating efficiency, generalized free enthalpy indicating efficiency and generalized fire indicating efficiency are defined. It is proved that generalized thermodynamics can also be used in practical process analysis.
【學(xué)位授予單位】:浙江大學(xué)
【學(xué)位級別】:博士
【學(xué)位授予年份】:2017
【分類號】:O414.1
【參考文獻(xiàn)】
相關(guān)期刊論文 前10條
1 李俊;陳林根;戈延林;孫豐瑞;;內(nèi)可逆正反向兩熱源循環(huán)復(fù)雜傳熱規(guī)律下生態(tài)學(xué)最優(yōu)性能[J];熱科學(xué)與技術(shù);2013年03期
2 萬宇飛;劉人瑋;程濤;;改進(jìn)的管道天然氣液化裝置及優(yōu)化研究[J];當(dāng)代化工;2013年07期
3 張鐠;鹿來運;何力;郭開華;;利用天然氣管網(wǎng)壓力能的小型液化流程設(shè)計[J];低溫與超導(dǎo);2013年04期
4 郭江峰;許明田;程林;;換熱器內(nèi)隨溫度變化的黏度對兩流體(火積)的影響[J];科學(xué)通報;2011年23期
5 程雪濤;梁新剛;徐向華;;(火積)的微觀表述[J];物理學(xué)報;2011年06期
6 肖根福;劉國平;王俊亭;宋紅滾;;無油渦旋空氣壓縮機(jī)壓縮過程研究[J];流體機(jī)械;2011年05期
7 樊栓獅;陳玉娟;鄭惠平;徐文東;郎雪梅;;利用管網(wǎng)壓力能制備天然氣水合物的調(diào)峰新技術(shù)[J];天然氣工業(yè);2010年10期
8 孫潔;;城市門站壓力能回收設(shè)備研究應(yīng)用進(jìn)展[J];煤氣與熱力;2010年07期
9 劉輝明;徐冬;龔領(lǐng)會;;固體材料低溫比熱測量技術(shù)綜述[J];低溫與超導(dǎo);2010年05期
10 柳雄斌;過增元;;換熱器性能分析新方法[J];物理學(xué)報;2009年07期
,本文編號:2099959
本文鏈接:http://sikaile.net/shoufeilunwen/jckxbs/2099959.html