中高層大氣風(fēng)場探測多普勒非對稱空間外差技術(shù)研究
本文選題:中高層大氣 + 多普勒非對稱空間外差干涉儀; 參考:《中國科學(xué)技術(shù)大學(xué)》2017年博士論文
【摘要】:中高層風(fēng)場探測對于理解大氣動力學(xué)和光化學(xué)過程,建立大氣動態(tài)模型,提供中長期天氣預(yù)報(bào),保障航空航天事業(yè)的發(fā)展具有重要的作用。被動風(fēng)場探測以中高層大氣中的氣輝為光源,通過譜線的多普勒效應(yīng)反演風(fēng)場參數(shù)。典型的被動風(fēng)場探測技術(shù)包括Fabry-Perot干涉技術(shù)和Michelson干涉技術(shù)。近年來,多普勒非對稱空間外差(Doppler Asymmetric Spatial Heterodyne,DASH)技術(shù)以其寬視場、大光通量、高光譜分辨率、靜態(tài)干涉和多譜線同時(shí)探測的優(yōu)點(diǎn)迅速成為被動風(fēng)場探測的研究熱點(diǎn)。結(jié)合空間外差光譜技術(shù)和Michelson干涉技術(shù),通過大光程差處干涉相位的變化反演風(fēng)速。國際上對DASH技術(shù)的研究已經(jīng)有一定的基礎(chǔ),設(shè)計(jì)地基探測氧紅線干涉儀。為了研制穩(wěn)定性較高的儀器,采用Koster棱鏡分光形成共光路單臂式干涉儀結(jié)構(gòu),增大系統(tǒng)的光程差要以成倍增加儀器體積為代價(jià),因此在星載儀器設(shè)計(jì)時(shí)采用了雙臂式方案。另一方面,風(fēng)速通過干涉絕對相位差分獲得,具有抗干擾能力強(qiáng)的特點(diǎn),目前的風(fēng)速反演并沒有考慮相位計(jì)算過程中的數(shù)據(jù)處理誤差,然而低相位靈敏度和數(shù)據(jù)處理誤差兩方面均影響了實(shí)際的風(fēng)場探測精度;谝陨峡紤],本文研制了雙臂大光程差DASH干涉儀LODI(Large Offset DASH Interferometer,LODI),通過設(shè)計(jì)風(fēng)速模擬器并搭建實(shí)驗(yàn)平臺實(shí)現(xiàn)風(fēng)場模擬探測。在數(shù)據(jù)處理過程中,提出窗函數(shù)參數(shù)的優(yōu)化選擇方法和相位漂移校正方法,實(shí)現(xiàn)干涉數(shù)據(jù)的誤差修正,提高風(fēng)速反演精度。本論文的主要工作包括以下幾個(gè)方面:1.基于DASH技術(shù)的風(fēng)場探測機(jī)理研究。從探測目標(biāo)的選擇出發(fā),闡述了探測目標(biāo)的性質(zhì)和對干涉儀系統(tǒng)設(shè)計(jì)的要求。在DASH理論模型的基礎(chǔ)上,針對風(fēng)場探測需求對干涉儀關(guān)鍵指標(biāo)進(jìn)行理論分析和推導(dǎo),明確系統(tǒng)參數(shù)設(shè)計(jì)的理論依據(jù)。2.依據(jù)DASH干涉儀基本原理提出LODI的儀器參數(shù),進(jìn)行系統(tǒng)仿真分析和設(shè)計(jì)。對干涉儀光學(xué)元件誤差(分束器、擴(kuò)視場棱鏡、光柵等)、系統(tǒng)噪聲和環(huán)境變化等因素產(chǎn)生的基頻漂移、絕對相位誤差和風(fēng)速誤差進(jìn)行了仿真和定量分析;根據(jù)干涉儀的探測需求,參考性能指標(biāo)設(shè)計(jì)系統(tǒng)的詳細(xì)參數(shù)。3.基于DASH技術(shù)的風(fēng)場反演算法研究。通過對比分析傅里葉級數(shù)法和傅里葉變換法求解干涉相位的優(yōu)劣,得出后者更適合應(yīng)用在DASH干涉相位獲取。在確定相位算法的前提下,對數(shù)據(jù)處理中的誤差進(jìn)行分析,指出窗函數(shù)作為一個(gè)外部變量,是引起干涉數(shù)據(jù)誤差的原因。提出窗函數(shù)優(yōu)化選擇方法,指出通過選擇半高寬為2的Nuttall窗,能夠使由窗函數(shù)參數(shù)產(chǎn)生的風(fēng)速誤差最小化。4.LODI風(fēng)場探測實(shí)驗(yàn)研究。根據(jù)風(fēng)速模擬基本原理,給出風(fēng)速模擬器的機(jī)械設(shè)計(jì)方案,并且定量分析了風(fēng)速模擬器的模擬風(fēng)速誤差,指出總風(fēng)速模擬誤差約為1.3%,主要是由夾角誤差和測量誤差導(dǎo)致。以干涉儀系統(tǒng)為核心搭建試驗(yàn)裝置進(jìn)行風(fēng)速模擬探測,對干涉數(shù)據(jù)進(jìn)行誤差修正。通過在光譜變換時(shí)進(jìn)行窗函數(shù)優(yōu)化分析,指出在光程差間隔內(nèi)矩形窗產(chǎn)生的風(fēng)速誤差達(dá)1.75m/s,Nuttall窗下的風(fēng)速變化最小,約0.75m/s。隨著窗函數(shù)半高寬增加,風(fēng)速誤差變大。選擇半高寬為2的Nuttall窗函數(shù),使在風(fēng)速47.62 m/s時(shí)的風(fēng)速誤差減小了約1.5 m/s。通過測量多組同一風(fēng)速下的干涉圖頻移,反演得到風(fēng)速誤差為6.1 m/s,該誤差主要來源于相位漂移。為了消除相位漂移誤差對風(fēng)速的影響,通過連續(xù)采樣的方法進(jìn)行相位漂移誤差校正,風(fēng)速誤差在校正后降低了 28 m/s,從而實(shí)現(xiàn)測量精度的提高。在34.19 m/s到78.63 m/s范圍內(nèi)進(jìn)行24組風(fēng)速模擬探測實(shí)驗(yàn),得出相應(yīng)的風(fēng)速反演誤差和不確定性,最終獲得2.92m/s的實(shí)驗(yàn)室風(fēng)速模擬探測精度。
[Abstract]:Middle and high rise wind field detection plays an important role in understanding atmospheric dynamics and photochemical processes, establishing atmospheric dynamic models, providing medium and long term weather forecasting, and ensuring the development of Aeronautics and Astronautics. The passive wind field detection uses the air glow in the middle and upper atmosphere as the light source and the Doppler effect of the spectral line is used to retrieve the wind field parameters. Wind field detection techniques include Fabry-Perot interferometry and Michelson interferometry. In recent years, Doppler asymmetric spatial heterodyne (Doppler Asymmetric Spatial Heterodyne, DASH) technology has rapidly become the research heat of passive wind field detection with its wide field of view, large light flux, high spectral resolution, static interference and simultaneous detection of multispectral lines. In combination with spatial heterodyne spectroscopy and Michelson interference technique, the wind velocity is retrieved through the variation of interference phase in the large optical path difference. The research on DASH technology has already had a certain foundation, and the oxygen and red line interferometer is designed for the foundation detection. In order to develop the instrument with high stability, the Koster prism is used to form the single arm interference of the common optical path. At the expense of increasing the optical path difference of the system, the dual arm scheme is used in the design of the spaceborne instrument. On the other hand, the wind speed is obtained by interfering with the absolute phase difference. The wind speed inversion does not take into account the data processing error in the phase calculation. However, the two aspects of low phase sensitivity and data processing error all affect the accuracy of the actual wind field detection. Based on the above considerations, this paper developed a double arm large optical range DASH interferometer LODI (Large Offset DASH Interferometer, LODI). By designing the wind speed simulator and building an experimental platform to realize the wind field simulation detection. In the data processing process, the data processing process is realized. In this paper, the optimal selection method of window function parameters and the phase drift correction method are proposed to correct the error of interference data and improve the accuracy of wind velocity inversion. The main work of this thesis includes the following aspects: 1. research on the mechanism of wind field detection based on DASH technology. On the basis of the DASH theoretical model, the theoretical analysis and deduction of the key indexes of the interferometer are carried out on the basis of the requirement of the wind field detection. The theory of system parameter design is made clear by.2. based on the basic principle of DASH interferometer. The system simulation analysis and design are carried out. The error of the interferometer optical element is analyzed and designed. (beam splitter, field prism, grating, etc.), fundamental frequency drift, absolute phase error and wind speed error caused by system noise and environmental change, and the detailed analysis of the absolute phase error and wind speed error. According to the detection requirements of the interferometer, the detailed parameters of the reference performance index design system.3. based on the DASH technique are studied. This paper analyzes the advantages and disadvantages of Fu Liye series method and Fu Liye transform method to solve the interference phase, and concludes that the latter is more suitable for DASH interference phase acquisition. On the premise of determining the phase algorithm, the error in the data processing is analyzed. It is pointed out that the window function is an external variable, which is the cause of the interference data error. It is pointed out that by selecting a Nuttall window with a half width of 2, the wind speed error generated by the window function parameters can be minimized by the.4.LODI wind field detection experiment. According to the basic principle of the wind speed simulation, the mechanical design scheme of the wind speed simulator is given, and the simulated wind speed error of the wind speed simulator is quantitatively analyzed, and the total wind speed simulation is pointed out. The error is about 1.3%, which is mainly caused by the angle error and the measurement error. The wind speed simulation detection is built with the interferometer system as the core. The error correction is made to the interference data. Through the window function optimization analysis in the spectral transformation, the wind speed error generated by the moment window in the gap interval of the optical path is 1.75m/s, Nuttall window. The wind speed change is minimal, and the wind speed error becomes larger with the increase of the half height and width of the window function, and the wind speed error becomes larger. Select the Nuttall window function of half Gao Kuan 2. The wind speed error at 47.62 m/s is reduced by about 1.5 m/s. by measuring the frequency shift of the interferogram under the same wind speed, and the wind velocity error is 6.1 m/s, which is mainly derived from the phase. Position drift. In order to eliminate the influence of phase drift error on wind speed, the phase drift error correction is carried out by continuous sampling method. The wind speed error is reduced by 28 m/s after correction, thus the measurement accuracy is improved. 24 sets of wind speed simulation experiments are carried out in the range of 34.19 m/s to 78.63 m/s, and the corresponding wind velocity inversion error is obtained. Uncertainty, and ultimately obtain the accuracy of 2.92m/s laboratory wind speed simulation.
【學(xué)位授予單位】:中國科學(xué)技術(shù)大學(xué)
【學(xué)位級別】:博士
【學(xué)位授予年份】:2017
【分類號】:P412.2
【參考文獻(xiàn)】
相關(guān)期刊論文 前10條
1 費(fèi)小云;馮玉濤;白清蘭;謝念;李勇;閆鵬;孫劍;;雙視場準(zhǔn)共路多普勒外差干涉儀光學(xué)系統(tǒng)設(shè)計(jì)[J];光學(xué)學(xué)報(bào);2015年04期
2 王英鑒;王詠梅;王后茂;;高層大氣測風(fēng)用地基F-P干涉儀的數(shù)值模擬[J];地球物理學(xué)報(bào);2014年06期
3 王后茂;王詠梅;王英鑒;;基于Fabry-Perot的中高層大氣風(fēng)速反演數(shù)據(jù)處理研究[J];地球物理學(xué)報(bào);2013年04期
4 石大蓮;白清蘭;馮玉濤;汶德勝;;大氣風(fēng)場和溫度場星載探測光譜儀的星上定標(biāo)技術(shù)[J];應(yīng)用光學(xué);2011年05期
5 張淳民;朱化春;王鼎益;趙葆常;代海山;張霖;;高層大氣被動探測技術(shù)[J];光學(xué)學(xué)報(bào);2011年09期
6 袁椺;徐寄遙;馬瑞平;吳謙;姜國英;高紅;劉曉;陳孫征;;我國光學(xué)干涉儀對中高層大氣風(fēng)場的首次觀測[J];科學(xué)通報(bào);2010年35期
7 張宣妮;;風(fēng)成像邁克爾遜干涉儀的研究[J];價(jià)值工程;2010年26期
8 韓威華;王詠梅;呂建工;杜述松;;中高層大氣風(fēng)場星載FPI干涉條紋的處理[J];科學(xué)技術(shù)與工程;2010年10期
9 李浩;張燕革;;模擬大氣風(fēng)場及其數(shù)據(jù)處理技術(shù)的研究[J];應(yīng)用光學(xué);2009年02期
10 王詠梅;付利平;杜述松;王英鑒;;中高層大氣風(fēng)場和溫度場星載探測技術(shù)研究進(jìn)展[J];空間科學(xué)學(xué)報(bào);2009年01期
,本文編號:2063407
本文鏈接:http://sikaile.net/shoufeilunwen/jckxbs/2063407.html