弱膠結(jié)砂巖細(xì)觀結(jié)構(gòu)特征與變形破壞機(jī)理研究及應(yīng)用
本文選題:弱膠結(jié)砂巖 + 類相變臨界狀態(tài); 參考:《北京科技大學(xué)》2017年博士論文
【摘要】:弱膠結(jié)地層是廣泛分布在我國西部礦區(qū)侏羅系、白堊系地層中的一類特殊沉積砂巖地層。該地層主要為成分成熟度及結(jié)構(gòu)成熟度較低的弱膠結(jié)砂巖,富含剛性顆粒,具有弱膠結(jié)、低強(qiáng)度、遇水后泥化崩解、擾動敏感等特性,對許多深部地下工程支護(hù)方式及圍巖穩(wěn)定性控制產(chǎn)生了極大的影響。本文以弱膠結(jié)砂巖為研究對象,采用膠結(jié)砂巖細(xì)觀結(jié)構(gòu)試驗(yàn)、宏觀巖石力學(xué)實(shí)驗(yàn)、理論分析和數(shù)值模擬等技術(shù)手段,研究了弱膠結(jié)砂巖的礦物成分和細(xì)觀結(jié)構(gòu)特征及其對靜力學(xué)和動力學(xué)性能的影響;揭示了弱膠結(jié)砂巖水巖相互作用機(jī)理及對滲透特性的影響;建立了弱膠結(jié)砂巖重整化模型,證明了弱膠結(jié)砂巖受力變形破壞過程中類相變臨界狀態(tài)的存在并建立了相應(yīng)判別條件,對弱膠結(jié)砂巖的類相變臨界狀態(tài)及判別特征進(jìn)性了充分闡述;基于弱膠結(jié)砂巖受力加載變形破壞過程的類相變臨界現(xiàn)象及其物理意義,分析了弱膠結(jié)地層中巷道開挖互相擾動特性,并對弱膠結(jié)圍巖支護(hù)提出了有效的主動支護(hù)對策。本課題主要取得以下研究成果與進(jìn)展:(1)采用QEMSCAN電鏡、SEM掃描電鏡、體式顯微鏡等手段對弱膠結(jié)砂巖的礦物組成、化學(xué)成分、晶體結(jié)構(gòu)、微結(jié)構(gòu)特征等進(jìn)行了定量和定性研究。研究表明,弱膠結(jié)砂巖從細(xì)觀結(jié)構(gòu)分析主要以顆粒物質(zhì)和膠結(jié)物質(zhì)在壓實(shí)和膠結(jié)作用下形成的膠結(jié)結(jié)構(gòu);弱膠結(jié)砂巖的礦物組成成分的差異性和顆粒之間的接觸狀態(tài)對其力學(xué)性質(zhì)有重要的影響;通過對比分析發(fā)現(xiàn)其成熟度遠(yuǎn)低于我國中東部地區(qū)砂巖。(2)通過巖石力學(xué)靜力學(xué)加載試驗(yàn)、動力學(xué)沖擊實(shí)驗(yàn)和離散元數(shù)值分析的方法,對其受力變形破壞特征進(jìn)行研究。研究表明,弱膠結(jié)砂巖的宏觀力學(xué)行為主要由粒間接觸決定,當(dāng)邊界荷載發(fā)生變化時(shí),弱膠結(jié)砂巖顆粒間作用力隨之發(fā)生變化,造成膠結(jié)砂巖顆粒體系細(xì)觀結(jié)構(gòu)的變化;弱膠結(jié)膠結(jié)砂巖細(xì)觀顆粒接觸參數(shù)對膠結(jié)砂巖的力學(xué)特性和變形破壞特征有重要影響。由于細(xì)觀結(jié)構(gòu)的膠結(jié)物質(zhì)的強(qiáng)度較低,弱膠結(jié)砂巖在沖擊破壞時(shí)能量消耗的較少,即在較低的沖擊能量下破壞程度較高。(3)通過對弱膠結(jié)砂巖進(jìn)行浸泡飽水實(shí)驗(yàn)、細(xì)觀結(jié)構(gòu)分析試驗(yàn)、飽水變角剪切試驗(yàn)、干濕循環(huán)條件下的聲發(fā)射試驗(yàn)和滲透試驗(yàn)等力學(xué)實(shí)驗(yàn)方法研究了水巖相互作用機(jī)理及其對弱膠結(jié)砂巖力學(xué)性質(zhì)的影響。研究表明:弱膠結(jié)砂巖顆粒間粘土膠結(jié)物質(zhì)遇水泥化、膨脹以及弱膠結(jié)砂巖的高孔隙率致使水更容易進(jìn)入巖石內(nèi)部結(jié)構(gòu),礦物顆粒溶蝕破壞礦物集合體的結(jié)構(gòu),進(jìn)而導(dǎo)致弱膠結(jié)砂巖內(nèi)部細(xì)觀結(jié)構(gòu)發(fā)生變化,最終導(dǎo)致了弱膠結(jié)砂巖強(qiáng)度降低;水巖相互作用對剪切破壞形貌特征、聲發(fā)射特性及滲透特性有重要影響。(4)通過對弱膠結(jié)砂巖礦物成分和細(xì)觀結(jié)構(gòu)的分析、力學(xué)實(shí)驗(yàn)、弱膠結(jié)砂巖細(xì)觀結(jié)構(gòu)受力理論分析,建立弱膠結(jié)砂巖的重整化群模型并結(jié)合弱膠結(jié)砂巖加載過程中的聲發(fā)射特性,證明了弱膠結(jié)砂巖在受力加載變形破壞過程中存在一個(gè)類相變臨界狀態(tài),即膠結(jié)顆粒發(fā)生由連續(xù)狀態(tài)到離散狀態(tài)的轉(zhuǎn)化過程;弱膠結(jié)砂巖膠結(jié)度的差異,導(dǎo)致了達(dá)到類相變臨界狀態(tài)時(shí)對應(yīng)的臨界應(yīng)力和臨界應(yīng)變也不相同,破壞狀態(tài)也不相同;弱膠結(jié)砂巖在受力加載過程中接近類相變臨界狀態(tài)時(shí),試件對振動或者擾動異常敏感,微小的應(yīng)變△ε極易導(dǎo)致弱膠結(jié)弱膠結(jié)砂巖達(dá)到類相變臨界狀態(tài),即弱膠結(jié)砂巖內(nèi)部膠結(jié)顆粒發(fā)生連續(xù)到離散類相變轉(zhuǎn)化過程。而△ε取決于顆粒礦物成分、弱膠結(jié)砂巖成巖過程中的顆粒壓實(shí)特性及膠結(jié)物質(zhì)膠結(jié)特性、膠結(jié)物質(zhì)含量等細(xì)觀結(jié)構(gòu)因素,即取決于弱膠結(jié)砂巖的膠結(jié)度。弱膠結(jié)砂巖的膠結(jié)程度越差,類相變臨界狀態(tài)比硬巖達(dá)到屈服應(yīng)力值的點(diǎn)相對要提前越多。(5)通過區(qū)域地應(yīng)力特性分析,現(xiàn)場松動圈的測試以及數(shù)值模擬的方法,研究了弱膠結(jié)地層鄰近巷道掘進(jìn)的相互擾動因素;并基于弱膠結(jié)砂巖在受力加載過程中存在臨界類相變點(diǎn)這一特性,分析得到,在弱膠結(jié)地層中進(jìn)行工程挖時(shí),由于擾動敏感的特性,應(yīng)積極采取主動支護(hù)的方式,支護(hù)強(qiáng)度保證圍巖受力狀態(tài)維持在類相變臨界狀態(tài)以前是弱膠結(jié)砂巖支護(hù)對策的核心思想,并提出了合理的主動支護(hù)措施。
[Abstract]:Weak cemented strata are a kind of special sedimentary sandstone stratum, which are widely distributed in the Jurassic and Cretaceous strata of Western China. The formation is mainly composed of weak Cemented Sandstone with low composition maturity and low structural maturity. It is rich in rigid particles and has weak cementation, low strength, muddy disintegration after water and disturbance sensitivity and so on. The method of engineering support and the stability control of surrounding rock have great influence. This paper takes the weak Cemented Sandstone as the research object. Using the Cemented Sandstone microstructure test, the macroscopic rock mechanics experiment, the theoretical analysis and the numerical simulation, the mineral composition and the meso structure characteristics of the weak Cemented Sandstone and its statics and dynamics are studied. The interaction mechanism of the weak Cemented Sandstone water rock interaction and its influence on the permeability are revealed, and a weakly cemented sandstone renormalization model is established, which proves the existence of the critical state of the phase change of the weakly cemented Sandstone during the stress deformation and failure process and establishes the corresponding discriminant conditions for the critical state of the phase transition of the weakly cemented sandstone and the discrimination of the phase transition of the weakly cemented sandstone. The characteristics are fully expounded. Based on the critical phenomenon of phase change and its physical significance in the process of deformation and failure of the weak Cemented Sandstone, the interaction characteristics of tunnel excavation in the weak cemented strata are analyzed, and the effective active supporting measures are put forward for the weak cemented rock support. The main achievements and progress in this study are as follows: (1) mining The mineral composition, chemical composition, crystal structure and microstructural characteristics of weakly cemented sandstone are quantitatively and qualitatively studied by means of QEMSCAN electron microscope, SEM scanning electron microscope and body microscope. The study shows that the microstructure analysis of the weakly cemented sandstone is mainly composed of the cemented structure formed by the compaction and cementation of the granular material and the cemented substance. The difference in the mineral composition and the contact state between the weakly cemented sandstone and the contact state of the particles have an important influence on their mechanical properties. Through comparison and analysis, it is found that the maturity is far lower than the sandstone in the eastern part of China. (2) the mechanical static loading test, the dynamic punching experiment and the discrete element numerical analysis are applied to the force of the sandstone. The study shows that the macroscopic mechanical behavior of the weakly cemented sandstone is mainly determined by intergranular contact. When the boundary load changes, the intergranular interaction between the weakly cemented sandstone is changed, and the microstructure of the Cemented Sandstone particle system is changed, and the fine particle contact parameters of the weak Cemented Sandstone are cemented to the Cemented Sandstone. The mechanical properties and deformation and failure characteristics of sandstone have an important influence. Because the strength of the cemented material of the meso structure is low, the weakly cemented sandstone has less energy consumption during the impact damage, that is, it has a high degree of destruction under the lower impact energy. (3) through the experiment of soaking and filling the weak Cemented Sandstone, the microstructural analysis test, the satiety change. The mechanism of water rock interaction and its influence on the mechanical properties of weak Cemented Sandstone are studied by angular shear test, acoustic emission test and permeability test under dry and wet cycle. The study shows that the clay cementation material between weakly cemented sandstone particles is cemented, and the high porosity of the weak Cemented Sandstone makes water easier. In the inner structure of the rock, the dissolution of mineral particles destroys the structure of the mineral aggregate, which leads to the change in the inner microstructure of the weak Cemented Sandstone, and eventually leads to the decrease of the strength of the weak Cemented Sandstone. The interaction of water and rock has an important influence on the characteristics of the shear failure morphology, acoustic emission and permeability. (4) through the weak Cemented Sandstone ore It is proved that there is a critical state of the phase transition in the weak Cemented Sandstone during the loading and failure process of the weak Cemented Sandstone, that is, the cemented grain, which is proved by the analysis of the mechanics experiment and the weak Cemented Sandstone meso structure stress theory, the establishment of the renormalization group model of the weakly cemented sandstone and the acoustic emission characteristics during the loading process of the weak Cemented Sandstone. The difference in the cementation of the weakly cemented sandstone results in the difference between the critical stress and critical strain when the critical state of the phase transition is reached, and the failure state is different. When the weak Cemented Sandstone is near the critical state of the phase transition in the loading process, the specimen is vibrated or disturbed. Very sensitive, small strain delta epsilon easily leads to the weak cementation and weak Cemented Sandstone to reach the critical state of the phase like phase, that is, the continuous to the discrete phase transformation process in the weak Cemented Sandstone internal cementation particles, and the delta e depends on the particle mineral composition, the compaction property of the grains and cementation properties of the cemented material in the weak Cemented Sandstone diagenesis. The microstructural factors, such as material content, depend on the cementation degree of the weakly cemented sandstone. The worse the cementation of the weakly cemented sandstone, the more the critical state of the phase transition is higher than that of the hard rock. (5) the weak cementation is studied through the analysis of the regional stress characteristics, the test of the field loosening ring and the method of numerical simulation. On the basis of the characteristics of the critical phase transition point of the weak Cemented Sandstone during the loading process of the weak Cemented Sandstone, the characteristics of the critical phase transition point in the loading process of the weak Cemented Sandstone are analyzed. In the process of engineering excavation in the weak cemented stratum, the active supporting formula should be taken actively because of the sensitive characteristics of the disturbance, and the support strength ensures that the stress state of the surrounding rock is maintained in the class. The critical state of transformation before is the core idea of weak Cemented Sandstone supporting measures, and reasonable active support measures are put forward.
【學(xué)位授予單位】:北京科技大學(xué)
【學(xué)位級別】:博士
【學(xué)位授予年份】:2017
【分類號】:TU45
【參考文獻(xiàn)】
相關(guān)期刊論文 前10條
1 李清;侯健;王夢遠(yuǎn);馬萬權(quán);劉航;韓通;王思嘉;;弱膠結(jié)砂質(zhì)泥巖漸進(jìn)性破壞力學(xué)特性試驗(yàn)研究[J];煤炭學(xué)報(bào);2016年S2期
2 宋朝陽;紀(jì)洪廣;張?jiān)抡?孫利輝;劉陽軍;;主應(yīng)力對弱膠結(jié)軟巖馬頭門圍巖穩(wěn)定性影響[J];采礦與安全工程學(xué)報(bào);2016年06期
3 曾鵬;劉陽軍;紀(jì)洪廣;李成江;;單軸壓縮下粗砂巖臨界破壞的多頻段聲發(fā)射耦合判據(jù)和前兆識別特征[J];巖土工程學(xué)報(bào);2017年03期
4 王衛(wèi)華;李坤;王小金;姜海濤;嚴(yán)哲;;SHPB加載下含不同傾角裂隙的類巖石試樣力學(xué)特性[J];科技導(dǎo)報(bào);2016年18期
5 宋朝陽;紀(jì)洪廣;劉陽軍;孫利輝;;弱膠結(jié)圍巖條件下鄰近巷道掘進(jìn)擾動影響因素[J];采礦與安全工程學(xué)報(bào);2016年05期
6 紀(jì)洪廣;;“十三五”國家重點(diǎn)研發(fā)計(jì)劃重點(diǎn)專項(xiàng)項(xiàng)目“深部金屬礦建井與提升關(guān)鍵技術(shù)”開始實(shí)施[J];巖石力學(xué)與工程學(xué)報(bào);2016年09期
7 楊睿;;基于松動圈測試的煤巷圍巖分類及支護(hù)評價(jià)[J];工程建設(shè)與設(shè)計(jì);2016年07期
8 謝英剛;葉建平;潘新志;段長江;陳慶;楊麗萍;喻玉潔;;鄂爾多斯盆地臨興地區(qū)下石盒子組成巖作用類型及其對油氣儲層的控制作用[J];中國礦業(yè);2016年07期
9 王軍;齊文躍;李俊孟;孔國強(qiáng);宋天奇;;中國煤炭產(chǎn)能評價(jià)與預(yù)測研究[J];中國煤炭;2016年06期
10 季順迎;孫珊珊;陳曉東;;顆粒材料剪切流動狀態(tài)轉(zhuǎn)變的環(huán)剪試驗(yàn)研究[J];力學(xué)學(xué)報(bào);2016年05期
相關(guān)博士學(xué)位論文 前10條
1 王煜曦;巖石斷裂表面細(xì)觀接觸演化與剪切力學(xué)模型研究[D];北京科技大學(xué);2016年
2 張子健;玲南金礦深部開采巖爆危險(xiǎn)性分析與危險(xiǎn)區(qū)域預(yù)測[D];北京科技大學(xué);2015年
3 向鵬;深部高應(yīng)力礦床巖體開采擾動響應(yīng)特征研究[D];北京科技大學(xué);2015年
4 孟慶彬;極弱膠結(jié)巖體結(jié)構(gòu)與力學(xué)特性及本構(gòu)模型研究[D];中國礦業(yè)大學(xué);2014年
5 金瀏;細(xì)觀混凝土分析模型與方法研究[D];北京工業(yè)大學(xué);2014年
6 平琦;煤礦深部巖石動態(tài)力學(xué)特性試驗(yàn)研究及其應(yīng)用[D];安徽理工大學(xué);2013年
7 白燁;鄂爾多斯盆地測井成巖相判別[D];吉林大學(xué);2013年
8 傅晏;干濕循環(huán)水巖相互作用下巖石劣化機(jī)理研究[D];重慶大學(xué);2010年
9 洪亮;沖擊荷載下巖石強(qiáng)度及破碎能耗特征的尺寸效應(yīng)研究[D];中南大學(xué);2008年
10 柴肇云;物化型軟巖包覆改性的基礎(chǔ)理論及其應(yīng)用[D];太原理工大學(xué);2008年
相關(guān)碩士學(xué)位論文 前6條
1 侯憲港;單軸壓縮條件下弱膠結(jié)砂巖的力學(xué)及聲發(fā)射特性研究[D];東北大學(xué);2014年
2 黃維輝;干濕交替作用下砂巖劣化效應(yīng)研究[D];昆明理工大學(xué);2014年
3 梁源;溫度—圍壓作用下巖石力學(xué)特性研究[D];西安科技大學(xué);2013年
4 孔令輝;弱膠結(jié)軟巖巷道圍巖穩(wěn)定性分析及支護(hù)優(yōu)化研究[D];山東科技大學(xué);2011年
5 李志國;深部井眼巖石可鉆性與巖石力學(xué)特性實(shí)驗(yàn)研究[D];重慶大學(xué);2009年
6 孔祥輝;結(jié)構(gòu)面表面形態(tài)與力學(xué)性質(zhì)相關(guān)性研究[D];長江科學(xué)院;2008年
,本文編號:2019895
本文鏈接:http://sikaile.net/shoufeilunwen/jckxbs/2019895.html