利用煙道氣培養(yǎng)能源微或小球藻和柵藻的研究
本文選題:產(chǎn)油微藻 + 產(chǎn)碳水化合物微藻; 參考:《中國科學(xué)院研究生院(武漢植物園)》2016年博士論文
【摘要】:微藻生物能源是最有潛力代替?zhèn)鹘y(tǒng)化石燃料解決當(dāng)今能源危機(jī)和環(huán)境污染問題的可再生能源。目前,微藻生物能源的生產(chǎn)受制于高培養(yǎng)成本、低產(chǎn)能效率,為了促進(jìn)其產(chǎn)業(yè)化的發(fā)展,不僅要篩選優(yōu)良的微藻藻種,還必須降低微藻培養(yǎng)成本、提高產(chǎn)能效率。在培養(yǎng)微藻生產(chǎn)油脂的同時(shí)進(jìn)行煙道氣二氧化碳的固定,這是目前國內(nèi)外公認(rèn)的提高微藻產(chǎn)能的途徑,而煙道氣中氮氧化物、硫氧化物的存在為微藻固定煙道氣二氧化碳帶來了困難。本文一方面研究了模擬煙道氣(15% CO2、0.03% SO2、0.03% NO,N2平衡,V/V)對(duì)產(chǎn)油微藻蛋白核小球藻(Chlorella pyrenoidosa XQ-20044)生長和油脂積累的影響,研究了產(chǎn)碳水化合物柵藻(Scenedesmus sp. KM17)室內(nèi)外培養(yǎng)條件下的生長、固碳特征,另一方面研究了赤霉素(GA3)對(duì)產(chǎn)油微藻蛋白核小球藻(C. pyrenoidosa XQ-20044)生長和油脂積累的影響,以期將煙道氣凈化與微藻產(chǎn)油相耦合,促進(jìn)微藻生物質(zhì)積累,降低微藻生物柴油生產(chǎn)成本。主要結(jié)果如下:1.通過pH自動(dòng)反饋方式控制煙道氣的補(bǔ)充量,克服了煙道氣對(duì)小球藻生長的抑制,提高了煙道氣的固定效率,初步建立了小球藻產(chǎn)油、固碳、脫硫、除硝一體化模式。分批培養(yǎng)條件下,典型煙道氣(15% CO2,0.03% SO2,0.03% NO)中的S02可以作為小球藻生長和油脂積累的硫源,但是只能提供其所需硫源的25.2%,需要在培養(yǎng)基中補(bǔ)充硫源;NO只能提供小球藻正常生長所需氮源的約2%,不能顯著促進(jìn)小球藻的生長和油脂積累,也沒有表現(xiàn)出負(fù)面效應(yīng)。經(jīng)6d模擬煙道氣培養(yǎng),小球藻的總脂含量達(dá)到干重的38.0%;中性脂占總脂的81.2%;C16和C18在脂肪酸組成中相對(duì)含量最高,共占到脂肪酸總量的99.5%;飽和脂肪酸和單不飽和脂肪酸共占到脂肪酸總量的74.5%;模擬煙道氣中CO2、SO2和NO的去除率分別達(dá)到95.9%、100%和84.2%。表明小球藻可以高效固定煙道氣生產(chǎn)油脂。2.小球藻生長和油脂積累均受到NaNO3初始濃度的影響,2.35 mmol/L是小球藻半連續(xù)培養(yǎng)“分批培養(yǎng)階段”的最適NaNO3初始濃度。不同的NaNO3補(bǔ)充率和培養(yǎng)基更新率組合均能實(shí)現(xiàn)小球藻的半連續(xù)培養(yǎng),但不同組合對(duì)小球藻生物質(zhì)產(chǎn)率、油脂含量和油脂產(chǎn)率的影響差異明顯。當(dāng)NaNO3補(bǔ)充率為0.12 mg/(L·d)]、更新率為30.0%時(shí),小球藻的油脂含量(38.0%)顯著其他處理(p0.05),且油脂產(chǎn)率最大[45.5 mg/(L·d)]。利用模擬煙道氣培養(yǎng)小球藻,生物質(zhì)產(chǎn)率、油脂含量和油脂產(chǎn)率分別達(dá)到0.17g/(L·d)、30.8%和51.9mg/(L·d),且模擬煙道氣中CO2、SO2和NO的去除率分別為94.8%、100%、91.9%。此外,與分批培養(yǎng)相比,半連續(xù)培養(yǎng)的脂肪酸組成沒有明顯變化,但生物質(zhì)產(chǎn)率、油脂產(chǎn)率和C02固定率分別提高了23.3%、9.6%和28.0%。3.植物生長調(diào)節(jié)劑GA3通過促進(jìn)酯酶的活性和調(diào)節(jié)細(xì)胞內(nèi)碳源的分配提高小球藻的生長和油脂積累。當(dāng)GA3濃度為20 mg/L時(shí),油脂含量和油脂產(chǎn)率均最大,分別為29.2%和17.1 mg/(L·d)。0.1~20 mg/L GA3處理,C16和C18均為主要的脂肪酸,他們共占到脂肪酸總量的91.5%以上。此外,高濃度的GA3(10和20mg/L)顯著提高小球藻不飽和脂肪酸的含量(對(duì)照的1.6倍)。4.柵藻在室內(nèi)柱式光生物反應(yīng)器中培養(yǎng)8d,生物質(zhì)干重達(dá)到1.53g/L;蛋白質(zhì)含量、油脂含量和碳水化合物含量分別為干重的8.9%、20.6%和39.8%;生物質(zhì)產(chǎn)率、二氧化碳固定率和碳水化合物產(chǎn)率分別為172.5 mg/(L·d)、310.5 mg/(L·d)和71.5mg/(L·d)。室外箱式反應(yīng)器培養(yǎng)12 d,柵藻的蛋白質(zhì)含量、總脂含量和碳水化合物含量分別達(dá)到干重的6.9%、15.5%和48.7%;生物質(zhì)產(chǎn)率、二氧化碳固定率和碳水化合物產(chǎn)率分別為56.7 mg/(L·d)、102.1 mg/(L·d)和27.8 mg/(L·d)。室外5 m2開放式跑道池培養(yǎng),柵藻平臺(tái)末期的蛋白質(zhì)含量、總脂含量和碳水化合物含量分別達(dá)到干重的11.8%,12.7%和45.0%;生物質(zhì)產(chǎn)率、二氧化碳固定率和碳水化合物產(chǎn)率分別為67.5 mg/(L·d)、121.5 mg/(L·d)和30.5 mg/(L·d)。室內(nèi)模擬煙道氣培養(yǎng)與CO2培養(yǎng)柵藻的生物質(zhì)干重幾乎完全相同,碳水化合物含量也幾乎一致。利用模擬煙道氣培養(yǎng)柵藻第6天,生物質(zhì)產(chǎn)率為0.14g/(L·d),碳水化合物含量達(dá)到48.7%(干重)。柵藻培養(yǎng)系統(tǒng)對(duì)煙道氣中CO2、SO2和NO的去除率分別為94.5%、100%和98.5%。結(jié)果不僅表明,柵藻生長快、碳水化合物高、抗污染,是一株適合于室外規(guī);囵B(yǎng)的優(yōu)良產(chǎn)碳水化合物微藻,還表明了利用煙道氣培養(yǎng)柵藻生產(chǎn)碳水化合物,為燃料乙醇生產(chǎn)提供原料的巨大潛力。本研究初步建立了小球藻產(chǎn)油、固碳、脫硫、除硝一體化模式(分批培養(yǎng)和半連續(xù)培養(yǎng))和柵藻產(chǎn)糖、固碳、脫硫、除硝一體化模式,解決了利用工業(yè)廢氣C02培養(yǎng)能源微藻所面臨的一些關(guān)鍵科學(xué)問題和技術(shù)難題;通過GA3處理,提高了小球藻的產(chǎn)油能力,為微藻生物能源研發(fā)提供了提供了新的技術(shù)途徑。研究結(jié)果對(duì)于生物能源生產(chǎn)及環(huán)境污染治理具有重要意義。
[Abstract]:Microalgae biological energy is the most potential renewable energy to replace the traditional fossil fuel to solve the current energy crisis and environmental pollution problems. At present, the production of microalgae biological energy is subject to high cultivation cost and low productivity. In order to promote the development of its industrialization, it should not only screen fine algae species, but also reduce the culture of microalgae. In order to improve the productivity efficiency, it is a recognized way to improve the production capacity of microalgae at the same time, while cultivating microalgae to produce oil and oil, which is a recognized way to improve the productivity of microalgae at home and abroad, and the presence of oxides of sulfur in the flue gas is difficult for microalgae to fix the flue gas. In this paper, the simulated flue gas (15%) is studied. The effects of CO2,0.03% SO2,0.03% NO, N2 balance, V/V) on the growth and accumulation of oil producing microalgae Chlorella (Chlorella pyrenoidosa XQ-20044) were studied. The growth and carbon sequestration characteristics were studied under the incubation conditions of the carb algae (Scenedesmus sp. KM17). On the other hand, it was studied that gibberellin (GA3) had a nuclear pellet of microalgae producing microalgae. The effect of C. pyrenoidosa XQ-20044 growth and oil accumulation is expected to combine the flue gas purification with the microalgae producing oil phase, promote the accumulation of microalgae biomass and reduce the production cost of microalgae biodiesel. The main results are as follows: 1. the filling amount of flue gas is controlled by the automatic feedback of pH, and the inhibition of the growth of Chlorella in the flue gas is overcome. At the fixed efficiency of flue gas, a preliminary establishment of Chlorella production, carbon fixation, desulfurization and nitrate removal is established. Under batch culture, the S02 in typical flue gas (15% CO2,0.03% SO2,0.03% NO) can be used as a sulfur source for the growth of Chlorella and accumulation of oil, but only 25.2% of the sulfur source is provided for its required source, and the sulfur source should be supplemented in the medium. NO can only provide about 2% of the nitrogen source required for the normal growth of Chlorella. It can not significantly promote the growth and accumulation of Chlorella, and does not show negative effects. After 6D simulation of flue gas, the total lipid content of Chlorella can reach 38% of dry weight, 81.2% of the total fat, and the highest relative content of C16 and C18 in fatty acid composition. The total amount of fatty acids was 99.5%, saturated fatty acids and monounsaturated fatty acids accounted for 74.5% of the total fatty acids, and the removal rates of CO2, SO2 and NO in simulated flue gas were 95.9%, 100% and 84.2%. showed that Chlorella could be efficiently immobilized in flue gas, and the growth of.2. and the accumulation of oil were all affected by the initial NaNO3 concentration. 2. 35 mmol/L was the optimum initial concentration of NaNO3 in the semi continuous culture of Chlorella. The different NaNO3 supplementation and the medium renewal rate could achieve semi continuous culture of Chlorella, but the effects of different combinations on the biomass yield, oil content and oil yield of Chlorella were significantly different. When the rate of NaNO3 supplementation was 0.12 mg/ (L D)] when the rate of renewal is 30%, the oil content of Chlorella (38%) is significantly (P0.05), and the oil yield is maximum [45.5 mg/ (L. D). Using simulated flue gas to cultivate Chlorella, biomass yield, oil content and oil yield are 0.17g/ (L. D), 30.8% and 51.9mg/ (L d), respectively. In addition to 94.8%, 100%, 91.9%., there was no significant change in the composition of fatty acids in semi continuous culture compared with batch culture, but biomass yield, oil yield and C02 fixation rate increased by 23.3% respectively. 9.6% and 28.0%.3. plant growth regulator GA3 increased the growth of Chlorella by promoting esterase activity and regulating the distribution of intracellular carbon sources. Oil accumulation. When GA3 concentration is 20 mg/L, oil content and oil yield are the largest, respectively 29.2% and 17.1 mg/ (L. D).0.1 ~ 20 mg/L GA3, C16 and C18 are the main fatty acids, they account for more than 91.5% of the total fatty acids. Furthermore, the high concentration of GA3 (10 and 20mg/L) significantly increases the content of the unsaturated fatty acids of Chlorella. 1.6 times as well as.4.), 8D was cultured in an indoor column photo bioreactor. The dry weight of biomass reached 1.53g/L, protein content, oil content and carbohydrate content were 8.9%, 20.6% and 39.8% respectively, biomass yield, carbon dioxide fixed rate and carbohydrate yield were 172.5 mg/ (L. D), 310.5 mg/ (L. D) and 71.5mg respectively. / (L. D). The outdoor box reactor culture was 12 d, the protein content of the algae, the total fat content and carbohydrate content reached 6.9%, 15.5% and 48.7%, respectively, the biomass yield, the carbon dioxide fixed rate and the carbohydrate yield were 56.7 mg/ (L. D), 102.1 mg/ (L. D) and 27.8 mg/ (L d). Outdoor 5 open runway pool culture, gate The protein content, total fat content and carbohydrate content at the end of the algae platform reached 11.8%, 12.7% and 45%, respectively. Biomass yield, carbon dioxide fixed rate and carbohydrate yield were 67.5 mg/ (L. D), 121.5 mg/ (L. D) and 30.5 mg/ (L. D). The carbohydrate content was almost identical. Using simulated flue gas for sixth days, the yield of biomass was 0.14g/ (L. D), and the carbohydrate content reached 48.7% (dry weight). The removal rate of CO2, SO2 and NO in the flue gas was 94.5%, 100% and 98.5%. respectively, and the results not only showed that the growth of the algae was fast, and the carbon and water were combined. High quality, anti pollution, is a fine carb producing microalgae suitable for outdoor scale culture. It also shows the great potential of producing carbohydrates by using flue gas to produce carbs and providing raw materials for the production of fuel ethanol. This study has initially established a model for the integration of Chlorella producing, carbon fixation, desulfurization, and nitrate removal (batch culture and half connection). Continuous culture) and the production of sugar, carbon sequestration, desulphurization and denitrification integrated model, solved some key scientific problems and technical problems facing the use of industrial waste gas C02 to cultivate energy microalgae. Through the treatment of GA3, the oil producing ability of Chlorella was improved, and a new technical way was provided for the research and development of microalgae bio energy. Material and energy production and environmental pollution control is of great significance.
【學(xué)位授予單位】:中國科學(xué)院研究生院(武漢植物園)
【學(xué)位級(jí)別】:博士
【學(xué)位授予年份】:2016
【分類號(hào)】:Q949.2
【相似文獻(xiàn)】
相關(guān)期刊論文 前7條
1 ;鍋爐煙道除塵器[J];科技簡(jiǎn)報(bào);1972年04期
2 陳向民;李慧穎;李智勇;劉世瑞;;利用氨吸收電廠煙道氣中的CO_2及對(duì)大氣減排CO_2的分析[J];河北工業(yè)科技;2008年01期
3 李達(dá),王傳珊,徐加強(qiáng);電子束凈化煙道氣的Monte-Carlo模擬[J];上海大學(xué)學(xué)報(bào)(自然科學(xué)版);2003年01期
4 王敦球,張文杰,錢瑩,宋韶華;粉煤灰脫除煙道氣SO_2實(shí)驗(yàn)[J];桂林工學(xué)院學(xué)報(bào);2005年02期
5 尹文萱;劉建周;高麗平;江晶亮;王志華;;改性乙醇胺富集煙道氣中CO_2的FTIR研究[J];光譜學(xué)與光譜分析;2011年05期
6 王鵬;李琳;韓曉冬;;煙道氣吞吐技術(shù)在水敏性油藏開發(fā)中的應(yīng)用[J];內(nèi)江科技;2014年04期
7 ;[J];;年期
相關(guān)會(huì)議論文 前5條
1 肖九高;汪志和;;煙道氣脫除和回收二氧化碳技術(shù)[A];第九屆全國有色金屬工業(yè)冶煉煙氣治理專利技術(shù)推廣及三廢無害化處置研發(fā)技術(shù)研討會(huì)論文集[C];2012年
2 楊邵鴻;蘭志廣;段光濤;姚文志;;北營焦化廠引進(jìn)焦?fàn)t煙道廢氣余熱利用項(xiàng)目可研[A];2013年全國冶金能源環(huán)保生產(chǎn)技術(shù)會(huì)論文集[C];2013年
3 朱鴻吉;;粉煤灰的綜合利用和超細(xì)加工[A];第二屆中國商品粉煤灰及磨細(xì)礦渣加工與應(yīng)用技術(shù)交流大會(huì)論文集[C];2004年
4 肖建;羅林強(qiáng);蔡文龍;;無除濕預(yù)處理法采樣測(cè)定煙道氣低濃度SO_2[A];中國環(huán)境科學(xué)學(xué)會(huì)2006年學(xué)術(shù)年會(huì)優(yōu)秀論文集(下卷)[C];2006年
5 肖建;羅林強(qiáng);蔡文龍;;無除濕預(yù)處理法采樣測(cè)定煙道氣低濃度SO_2[A];中國環(huán)境科學(xué)學(xué)會(huì)2006年學(xué)術(shù)年會(huì)優(yōu)秀論文集(下卷)[C];2006年
相關(guān)重要報(bào)紙文章 前5條
1 ;焦?fàn)t煙道氣凈化工藝[N];世界金屬導(dǎo)報(bào);2014年
2 記者 李陳續(xù) 通訊員 李靜;新技術(shù)點(diǎn)“污”成金[N];光明日?qǐng)?bào);2010年
3 陳斌;低分壓二氧化碳回收新技術(shù)[N];中國石化報(bào);2003年
4 本報(bào)記者 王翰林 實(shí)習(xí)生 岳瑞杰;環(huán)保降成本技術(shù)筑輝煌[N];科技日?qǐng)?bào);2003年
5 朱華東 鄭文華 趙福齊 于寶會(huì) 高志軍 于輝;焦?fàn)t煙道氣余熱的回收[N];世界金屬導(dǎo)報(bào);2011年
相關(guān)博士學(xué)位論文 前3條
1 劉清;胺改性工業(yè)級(jí)碳納米管吸附分離煙道氣中二氧化碳的研究[D];浙江大學(xué);2015年
2 杜奎;利用煙道氣培養(yǎng)能源微或小球藻和柵藻的研究[D];中國科學(xué)院研究生院(武漢植物園);2016年
3 劉振;燃煤電廠煙道氣中二氧化碳吸附捕集過程的研究[D];華東理工大學(xué);2012年
相關(guān)碩士學(xué)位論文 前10條
1 金萍萍;有機(jī)胺復(fù)合溶液吸收煙道氣中CO_2反應(yīng)過程研究[D];中國石油大學(xué)(華東);2014年
2 黃孟;微生物捕集煙道氣中二氧化碳的試驗(yàn)研究[D];安徽理工大學(xué);2012年
3 王昕;堿性吸附劑捕集煙道氣二氧化碳技術(shù)研究[D];河北科技大學(xué);2013年
4 方磊;煙道濕法噴霧預(yù)脫硫技術(shù)流場(chǎng)模擬及性能試驗(yàn)[D];華南理工大學(xué);2015年
5 王峰;活性焦改性及其脫除煙道氣中SO_2的研究[D];北京化工大學(xué);2003年
6 楊珊榮;預(yù)測(cè)流速法在煉廠高溫高壓煙道煙塵濃度采樣中的應(yīng)用與研究[D];湘潭大學(xué);2006年
7 李喜玉;可再生胺法煙道氣脫硫吸收解吸一體化[D];華南理工大學(xué);2011年
8 楊改;微藻固定實(shí)際煙道氣中CO_2的研究[D];武漢科技大學(xué);2011年
9 孟秀芳;焦?fàn)t煙道氣余熱利用技術(shù)研究[D];天津大學(xué);2013年
10 袁文峰;膜接觸器分離、回收煙道氣中二氧化碳的研究[D];浙江大學(xué);2004年
,本文編號(hào):2010260
本文鏈接:http://sikaile.net/shoufeilunwen/jckxbs/2010260.html