中高層大氣氣輝光譜的探測與研究
本文選題:氣輝 + 輻射; 參考:《中國科學(xué)院國家空間科學(xué)中心》2016年博士論文
【摘要】:氣輝作為中高層大氣中重要的光化學(xué)現(xiàn)象之一,受來自底部氣象活動(dòng)與外部太陽輻射的共同影響。氣輝輻射攜帶有重要光化和動(dòng)力學(xué)信息,通過氣輝輻射觀測研究中高層大氣化學(xué)和物理學(xué)性質(zhì)一直被廣泛采用。在2011年11月,我們在河北興隆(40.39°N,117.58°E)利用光柵光譜儀建立了一套用于大氣輻射探測的系統(tǒng)。該觀測系統(tǒng)由光譜儀、CCD探測器以及前光學(xué)系統(tǒng)和控制軟件組成。該系統(tǒng)觀測波長范圍從~530nm至~1000nm,觀測譜段包含原子氧的綠線(557.7 nm)和紅線(630 nm),原子鈉的雙線,O_2(0-1)帶,OH的8-3、4-0、5-1、9-4、6-2、7-3、8-4以及3-0帶等重要的氣輝輻射光譜。通過幾年連續(xù)觀測積累的數(shù)據(jù),本文主要進(jìn)行了以下幾個(gè)方面的研究工作:1.利用地基觀測的OH譜帶轉(zhuǎn)動(dòng)溫度與SABER溫度的比較對Einstein系數(shù)進(jìn)行了評估,并給出了一套用于OH譜帶轉(zhuǎn)動(dòng)溫度計(jì)算的統(tǒng)一的最優(yōu)化Einstein系數(shù)比值。OH轉(zhuǎn)動(dòng)溫度被廣泛用于對中層頂區(qū)域光化學(xué)和動(dòng)力學(xué)過程的觀測和研究。其中,Einstein系數(shù)是計(jì)算轉(zhuǎn)動(dòng)溫度的重要參數(shù),而這一參數(shù)主要是通過量子力學(xué)的從頭計(jì)算(ab initio)方法計(jì)算得到。不同的研究者給出的Einstein系數(shù)存在較大差別,從而計(jì)算出的轉(zhuǎn)動(dòng)溫度也有所差別。我們利用TIMED衛(wèi)星上的SABER溫度探測與地基OH探測相互獨(dú)立這一重要特點(diǎn),開展了Einstein系數(shù)的計(jì)算。利用OH(9-4,8-3,6-2,5-1,3-0)五個(gè)譜帶的轉(zhuǎn)動(dòng)溫度與SABER溫度進(jìn)行比較,對5組Einstein系數(shù)進(jìn)行了評估。結(jié)果顯示,OH轉(zhuǎn)動(dòng)溫度與SABER溫度有一致的時(shí)間變化;兩者的線性相關(guān)系數(shù)都大于0.72。利用不同的Einstein計(jì)算的轉(zhuǎn)動(dòng)溫度與SABER溫度之間的偏差不同;對于每一振動(dòng)能級的溫度偏差進(jìn)行了評估。從結(jié)果可以看出,利用任意一組Einstein系數(shù)計(jì)算的轉(zhuǎn)動(dòng)溫度都有一系統(tǒng)偏差。然而,采用Langhoff等(1986)的Einstein系數(shù)計(jì)算的轉(zhuǎn)動(dòng)溫度與SABER溫度最接近。為了得到一組最優(yōu)的用于轉(zhuǎn)動(dòng)溫度計(jì)算的Einstein系數(shù),我們利用三年的地基OH觀測光譜與SABER同時(shí)探測的溫度開展了統(tǒng)計(jì)比較,給出了一組最優(yōu)的相對Einstein系數(shù)的比值。這套比值為全球不同地點(diǎn)OH轉(zhuǎn)動(dòng)溫度探測的比較提供了統(tǒng)一的標(biāo)準(zhǔn)。2.通過地基的O_2和OH氣輝觀測研究氣輝輻射對大氣波動(dòng)的響應(yīng)。大氣波動(dòng)(包括重力波、潮汐和行星波)對氣輝輻射具有顯著的調(diào)制作用,OH、O_2、O和Na等氣輝對大氣波動(dòng)的響應(yīng)早已被觀測到。當(dāng)波動(dòng)經(jīng)過氣輝層,強(qiáng)度和溫度都會(huì)產(chǎn)生擾動(dòng),但強(qiáng)度與溫度對于波動(dòng)的響應(yīng)存在差異,用Krassovsky提出的強(qiáng)度相對擾動(dòng)與溫度相對擾動(dòng)的比值η來描述。本文利用O_2和OH(6-2)帶氣輝輻射研究η對不同周期波動(dòng)響應(yīng)情況。對于小于12小時(shí)周期的波動(dòng),O_2的|η|范圍大約在1至10之間,隨周期增大有增大趨勢;OH(6-2)帶的|η|在1至10范圍之間,對周期沒有明顯變化。相位差基本上都小于0,即溫度擾動(dòng)要超前于強(qiáng)度擾動(dòng)。對于大于2日的行星波,O_2的|η|在10-15之間,OH(6-2)的|η|在5-11之間。兩種氣輝的η相位差都在0附近,只是O_2的略大于0,OH(6-2)的略小于0。通過與模擬結(jié)果比較發(fā)現(xiàn),目前的理論還無法完全與觀測一致。這是由于氣輝輻射對大氣波動(dòng)的響應(yīng)與輻射產(chǎn)生機(jī)制、淬滅過程以及背景大氣條件等都密切相關(guān),尤其是原子O的垂直分布。如果對于這些過程在理論或模擬中沒有準(zhǔn)確的認(rèn)識,那么必然造成理論與觀測的偏差。3.利用地基OH轉(zhuǎn)動(dòng)溫度與衛(wèi)星觀測比較研究北京地區(qū)上空溫度的季節(jié)性變化。我們利用2012-2013年兩年的OH(6-2)帶觀測計(jì)算的轉(zhuǎn)動(dòng)溫度,研究了中國北京地區(qū)上空中層頂區(qū)域溫度的季節(jié)性變化、年變化,并與SABER觀測的溫度進(jìn)行了比較。兩者平均溫度分別為196.8 K±13.1和196.3 K±11.9。通過兩種觀測結(jié)果比較,OH(6-2)帶的轉(zhuǎn)動(dòng)溫度與SABER探測溫度一致,兩者都存在明顯的季節(jié)變化,夏季有溫度極小值,冬季則有溫度極大值。通過諧波分析發(fā)現(xiàn),年振蕩是最強(qiáng)的波動(dòng),振幅達(dá)13.7 K,其次是半年振蕩,振幅則只有1.7 K。年振蕩和半年振蕩的相位分別在12月中旬和3月底。
[Abstract]:Air glow, as one of the important photochemical phenomena in the middle upper atmosphere, is influenced by the meteorological and external solar radiation at the bottom of the atmosphere. The air glow carries important photochemical and dynamic information. The chemical and physical properties of the upper atmosphere are widely used in the study of high upper atmosphere through the observation of air glow. In November 2011, we were in Hebei. A system for atmospheric radiation detection is established by using a grating spectrometer (40.39 N, 117.58 E). The system is composed of a spectrometer, a CCD detector, a former optical system and a control software. The wavelength range of the system is from ~530nm to ~1000nm, and the observation spectrum includes the green line (557.7 nm) and the red line (630 nm), and atomic sodium. The O_2 (0-1) band, the OH 8-3,4-0,5-1,9-4,6-2,7-3,8-4 and the 3-0 band and other important gas radiance spectra. Through the continuous observation of the accumulated data for several years, this paper mainly carried out the following research work: 1. the Einstein coefficient was evaluated by the comparison of the rotation temperature of the OH band with the SABER temperature by the ground observation, and the results were also given. A set of unified optimal Einstein coefficient ratio.OH rotational temperatures for the calculation of the rotational temperature of the OH band is widely used to observe and study the photochemical and dynamic processes of the middle layer. Among them, the Einstein coefficient is an important parameter for calculating the rotational temperature, and the number of the parameters is mainly through the ab initio calculation of quantum mechanics (AB I). Nitio) method is calculated. The Einstein coefficients given by different researchers are very different, and the calculated rotational temperatures are also different. We use the SABER temperature detection on the TIMED satellite and the foundation OH detection to be independent of each other. The calculation of the Einstein coefficient is carried out. The five spectral bands of OH (9-4,8-3,6-2,5-1,3-0) are used. The rotation temperature of the 5 groups of Einstein is compared with the SABER temperature. The results show that the rotation temperature of OH and the SABER temperature have the same time change, and the linear correlation coefficient of both of them is greater than the deviation between the rotational and SABER temperatures calculated by 0.72. with different Einstein, and the temperature of each vibrational energy level. The deviation is evaluated. It can be seen from the results that the rotation temperature calculated by any group of Einstein coefficients has a system deviation. However, the rotation temperature calculated with the Einstein coefficient of Langhoff et al (1986) is the closest to the SABER temperature. In order to get a set of optimal Einstein coefficients for the calculation of the transfer temperature, we use three years. The statistical comparison of the OH observational spectra and the temperature detected by SABER is carried out, and the ratio of the optimal relative Einstein coefficient is given. This set ratio provides a unified standard.2. for the comparison of the OH rotation temperature detection at different locations in the world. The response of the air glow to the atmospheric wave is studied by the O_2 and OH observations of the OH. The fluctuation of gas (including gravity waves, tides and planetary waves) has a significant modulation effect on the air glow radiation. The response of OH, O_2, O and Na to atmospheric fluctuations has long been observed. When the fluctuation passes through the gas layer, the intensity and temperature are disturbed, but the response of the intensity and temperature to the wave motion is different. The intensity relative to the Krassovsky is relative to the intensity. The response of the disturbance to the temperature relative perturbation is described. In this paper, O_2 and OH (6-2) have been used to study the response of ETA to different periodic fluctuations. For fluctuations less than 12 hours, the range of O_2 is about 1 to 10, and increases with the increase of the cycle. The OH (6-2) band is between 1 and 10, and the period does not change obviously. The phase difference is basically less than 0, that is, the temperature disturbance should go ahead of the intensity disturbance. For the planetary wave of more than 2 days, the O_2 is between 10-15, OH (6-2) and 5-11. Two kinds of gas glow is around 0, only the O_2 is slightly greater than 0, and OH (6-2) 0. is found by comparison with the simulation results that the current theory is not yet possible. It is entirely consistent with the observation, because the response of air glow to atmospheric fluctuations is closely related to the radiation generation mechanism, the quenching process and the background atmosphere, especially the vertical distribution of the atomic O. If these processes are not accurately understood in theory or simulation, it will inevitably lead to the use of theoretical and observational deviations of.3.. The OH rotation temperature of the foundation is compared with the satellite observation to study the seasonal variation of temperature over the Beijing area. We have studied the seasonal variation of the temperature in the top area of the air in the Beijing area of China with the rotation temperature calculated by the OH (6-2) band for 2012-2013 years and two years, and compared with the temperature observed by the SABER. The temperature is 196.8 K + 13.1 and 196.3 K + 11.9. respectively through two observation results. The rotation temperature of OH (6-2) band is in accordance with the SABER detection temperature. Both of them have obvious seasonal changes. In summer there is a temperature minimum, and in winter there is a maximum temperature. It is found that the annual oscillation is the strongest fluctuation, the amplitude is 13.7 K, followed by half. The annual oscillation is only 1.7 K. annual oscillation and half yearly oscillation phase in mid December and the end of March respectively.
【學(xué)位授予單位】:中國科學(xué)院國家空間科學(xué)中心
【學(xué)位級別】:博士
【學(xué)位授予年份】:2016
【分類號】:P412.2
【參考文獻(xiàn)】
相關(guān)期刊論文 前6條
1 劉偉軍;徐寄遙;袁椺;;北京地區(qū)上空OH轉(zhuǎn)動(dòng)溫度的季節(jié)性變化[J];地球物理學(xué)報(bào);2015年05期
2 王翠梅;李欽增;徐寄遙;袁椺;劉偉軍;孫龍昌;陳金松;燕春曉;;基于OH全天空氣輝成像儀觀測的中國低緯地區(qū)的重力波傳播統(tǒng)計(jì)特征[J];地球物理學(xué)報(bào);2014年11期
3 ;First experiment of spectrometric observation of hydroxyl emission and rotational temperature in the mesopause in China[J];Science China(Technological Sciences);2012年05期
4 ;Seasonal variations of night mesopause temperature in Beijing observed by SATI4[J];Science China(Technological Sciences);2012年05期
5 王詠梅,徐寄遙,王英鑒,劉振興;重力波誘導(dǎo)OH氣輝分布的變化[J];地球物理學(xué)報(bào);2004年01期
6 王詠梅;王英鑒;;OH氣輝對重力波響應(yīng)的模式研究[J];地球物理學(xué)報(bào);1998年04期
相關(guān)博士學(xué)位論文 前2條
1 高紅;中高層大氣氣輝輻射研究[D];中國科學(xué)院研究生院(空間科學(xué)與應(yīng)用研究中心);2008年
2 姜國英;中間層—低熱層大氣中的行星波研究[D];中國科學(xué)院研究生院(武漢物理與數(shù)學(xué)研究所);2007年
,本文編號:2006004
本文鏈接:http://sikaile.net/shoufeilunwen/jckxbs/2006004.html