天堂国产午夜亚洲专区-少妇人妻综合久久蜜臀-国产成人户外露出视频在线-国产91传媒一区二区三区

家蠶卵殼基因鑒定、功能及其表達(dá)調(diào)控研究

發(fā)布時間:2018-06-05 02:39

  本文選題:家蠶 + 卵殼基因; 參考:《西南大學(xué)》2017年博士論文


【摘要】:昆蟲種類繁多、數(shù)量巨大,是地球生物多樣性的重要貢獻(xiàn)者。在長期的進(jìn)化過程中,昆蟲與人類形成了復(fù)雜而密切的關(guān)系。一方面,昆蟲為人類提供了大量的物質(zhì)產(chǎn)品,其中鱗翅目昆蟲家蠶也創(chuàng)造了璀璨的蠶絲文化;另一方面,昆蟲也給人類造成了重大的經(jīng)濟(jì)損失,其中直翅目昆蟲蝗蟲更是書寫了一部人類農(nóng)業(yè)社會的血淚史。昆蟲數(shù)量多種類豐富的主要原因是驚人的產(chǎn)卵能力,大部分昆蟲的產(chǎn)卵量高達(dá)數(shù)百顆。因此,對昆蟲卵的研究將為有害昆蟲的防治,有益昆蟲產(chǎn)卵量的提高提供重要的理論基礎(chǔ)。卵殼是昆蟲卵細(xì)胞表面復(fù)雜的保護(hù)性結(jié)構(gòu),主要成分為卵殼蛋白,其編碼基因為卵殼基因。本研究以鱗翅目家蠶為研究對象,關(guān)注了卵殼基因的功能與調(diào)控。首先,鑒定了家蠶卵殼基因并繪制了其時期表達(dá)模式圖譜,利用LC-MS/MS,分析了卵殼的蛋白質(zhì)組成;其次,在功能研究上,以卵殼基因突變體桂灰卵(Grk)為材料,分析了其可能的突變機(jī)理;最后,在表達(dá)調(diào)控上,以miRNA為研究切入點(diǎn),重點(diǎn)分析了miRNA在卵殼基因表達(dá)調(diào)控中的角色。本研究獲得的主要研究結(jié)果如下:1.卵殼基因的鑒定及進(jìn)化分析家蠶卵殼基因是一個超基因家族,所有成員都位于2號染色體上的一段基因組區(qū)域內(nèi)(卵殼基因位點(diǎn))。卵殼基因經(jīng)歷了近40年的研究,近百個卵殼基因被鑒定。然而,高度的重復(fù)序列使卵殼基因位點(diǎn)測序非常困難,至今未被完整測序,這嚴(yán)重阻礙了卵殼基因全面、系統(tǒng)的研究。為此,本研究采用了對BAC測序的策略獲得了卵殼基因位點(diǎn)全長序列。首先,分析了家蠶BAC文庫中卵殼基因位點(diǎn)上200多個BAC的分布,篩選出7個能覆蓋完整卵殼基因位點(diǎn)的BAC。通過對7個BAC的測序,拼接組裝得到了871,711 bp的卵殼基因位點(diǎn)序列,利用FGENESH軟件對卵殼基因位點(diǎn)序列進(jìn)行基因預(yù)測,注釋到127個卵殼基因和5個非卵殼基因,其中卵殼基因標(biāo)注為BmCho-1~BmCho-127,包括36個早期、46個中期和45個后期卵殼基因。兩個卵發(fā)育時期的cdna文庫被用于進(jìn)一步確認(rèn)卵殼基因est的存在,反向證實(shí)了注釋的卵殼基因。卵殼基因主要以基因?qū)?genepair)的形式分布在基因組上。兩個后期卵殼基因因編碼區(qū)有多個終止密碼子被成為假基因(pseudogene)。進(jìn)化樹分析結(jié)果顯示同類型的卵殼基因聚成一簇,其中早期b類卵殼基因(earlyb)在進(jìn)化樹上分為兩個分支,其中一支和中期b類卵殼基因(middleb)聚到一個大的分支上。卵殼基因的表達(dá)模式顯示,這個早期b類卵殼基因分支中的7個基因有著中期卵殼基因相似的時期表達(dá)模式。進(jìn)化樹分析也揭示早期卵殼基因經(jīng)歷著較快的進(jìn)化速度,后期卵殼基因在進(jìn)化上相對保守。兩個假基因bmcho-23和bmcho-26也經(jīng)歷了較快的進(jìn)化速度。完整卵殼基因位點(diǎn)的鑒定是卵殼基因全面、系統(tǒng)研究的重要基礎(chǔ),本部分后面的研究都是以此為基礎(chǔ)的。2.卵殼基因的表達(dá)特征分析為了分析卵殼基因在卵發(fā)育過程中的表達(dá)情況,我們構(gòu)建了家蠶卵殼基因的精細(xì)表達(dá)模式圖。首先,我們對蛹8天不同發(fā)育時期的卵進(jìn)行了時期分段,因卵黃生成期(vitellogenesis)無卵殼基因表達(dá),此時期的卵呈微黃色;卵殼生成期(choriogenesis)為卵殼基因次序表達(dá)的時期,此時因卵殼的形成使卵色發(fā)白發(fā)亮,這是卵黃與卵殼生成期分段的標(biāo)志。根據(jù)卵殼基因表達(dá)的特征,將卵殼生成期細(xì)分為i~xi的11個發(fā)育時期。利用rt-pcr對鑒定的127個卵殼基因進(jìn)行了時期表達(dá)模式圖譜的構(gòu)建,結(jié)果顯示,早期和后期卵殼基因分別在卵殼生成期的早期(i~iii)和后期(ix~xi)表達(dá),而中期卵殼基因則在整個卵殼生成期皆有表達(dá)。通過對家蠶cdna庫搜索,鑒定到bmcho-1和bmcho-96在精巢中的轉(zhuǎn)錄本。卵泡上皮細(xì)胞和精巢中,bmcho-1的轉(zhuǎn)錄本有著相同的第二外顯子序列,第一外顯子則不同,bmcho-1的精巢轉(zhuǎn)錄本第一外顯子位于卵泡上皮細(xì)胞轉(zhuǎn)錄本的內(nèi)含子區(qū)域。精巢中bmcho-96的轉(zhuǎn)錄本有三個外顯子,精巢和卵泡上皮細(xì)胞中轉(zhuǎn)錄本的編碼區(qū)序列相同,預(yù)測將編碼相同的蛋白質(zhì)。在家蠶卵胚胎的cdna文庫中,鑒定到bmcho-11的轉(zhuǎn)錄本,胚胎中的轉(zhuǎn)錄本編碼區(qū)序列在5’端比卵泡上皮細(xì)胞中的轉(zhuǎn)錄本多27個堿基,預(yù)測多編碼9個氨基酸。分析發(fā)現(xiàn),幾乎每個后期卵殼基因除了成熟的轉(zhuǎn)錄本之外,還有一個拼接中間體形式(splicingintermediate),這種結(jié)構(gòu)包含5’utr、外顯子、內(nèi)含子、3’utr和多聚腺嘌呤序列。3.卵殼結(jié)構(gòu)的蛋白質(zhì)組分析通過lc-ms/ms質(zhì)譜分析,在大造(p50)卵殼中鑒定到260個蛋白,包括88個卵殼蛋白、28個卵巢特異性蛋白(非卵殼蛋白)和144個其它類型的蛋白。家蠶卵殼基因主要以基因?qū)?genepair)的形式分布在基因組上,每個基因?qū)Π粋a類和一個b類基因,兩個基因共用5’側(cè)翼的啟動子區(qū)域,a和b基因以相反的方向轉(zhuǎn)錄。在鑒定的卵殼蛋白中,基因?qū)χ衎編碼的蛋白更容易被鑒定到,這暗示雙向啟動子對b基因可能有更強(qiáng)的轉(zhuǎn)錄活性。卵殼中也鑒定到的一類卵巢特異的蛋白,編碼這類蛋白的基因主要成簇地分布在2號、10號、15號和16號染色體上,但多數(shù)為功能未知的家蠶特異基因。在2號染色體的卵殼基因位點(diǎn)上游100kb的范圍內(nèi)分布著12個卵巢特異基因,其中的10個基因編碼的蛋白在卵殼中被鑒定到,雖然它們的功能未知,但推測它們在卵殼基因的表達(dá)或卵殼結(jié)構(gòu)形態(tài)構(gòu)建中扮演著重要的作用。4.家蠶桂灰卵(grk)突變機(jī)理初探桂灰卵(grk)是家蠶卵殼基因突變導(dǎo)致的灰色卵突變體,突變基因位于卵殼基因位點(diǎn)內(nèi)(2-7.2)。表現(xiàn)型為:同質(zhì)型(grk/grk)卵為球形,受精率低;異質(zhì)型(grk/+)卵形正常,卵色為灰色,受精率正常;正常型(+/+)卵色為深褐色。sem觀察顯示,grk三種基因型卵殼表面沒有明顯的差異,而它們的卵殼層和卵孔處有較大差異。在卵殼層上,grk正常型的卵殼層由平行于卵細(xì)胞的片層構(gòu)成;而雜合型卵殼中間層的片層呈現(xiàn)垂直于卵細(xì)胞表面的表型;純合型卵殼中間片層則出現(xiàn)了更大程度的破壞,幾乎呈現(xiàn)紊亂的狀態(tài)。在卵孔結(jié)構(gòu)上,grk正常型卵孔被花瓣狀斑紋圍繞,內(nèi)層的斑紋凸出卵殼表面,卵孔出有4個卵孔管口。雜合型卵孔周圍的花瓣狀斑紋明顯比正常型小,且內(nèi)層的斑紋凸出程度減小,卵孔管口個數(shù)正常;純合型卵孔處的斑紋同樣變小,內(nèi)層的斑紋幾乎無凸出的表型,卵孔管口僅為2個。grk正常型、雜合型和純合型卵孔內(nèi)層斑紋的花瓣數(shù)依次減少。通過對grk卵殼的觀察,我們可以推斷grk突變體在卵殼殼層結(jié)構(gòu)發(fā)生的較大變化是導(dǎo)致其呈現(xiàn)灰色卵表型的基礎(chǔ),卵孔管口的減少則是卵受精率大大降低的原因。對卵殼結(jié)構(gòu)蛋白提取時發(fā)現(xiàn)grk正常型、雜合型及純合型卵殼結(jié)構(gòu)在8m尿素/35mmdtt裂解液中溶解度依次降低,在此裂解液基礎(chǔ)上增加dtt濃度,將增加grk突變體溶解度,但不能完全溶解。如果增加1%的sds,則能完全溶解grk突變體卵殼。這表明grk突變體卵殼結(jié)構(gòu)的變化可能影響了卵殼蛋白的溶解。grk三種基因型卵殼的定量蛋白質(zhì)組學(xué)分析顯示,bmcho-20、bmcho-41、bmcho-57、bmcho-62、bmcho-73和bmcho-115在grk正常型、雜合型和純合型卵殼中的含量呈依次增加,其中BmCho-20和BmCho-115為早期卵殼蛋白,BmCho-73為中期卵殼蛋白,BmCho-41、BmCho-57和BmCho-62為后期卵殼蛋白。富含半胱氨酸的后期卵殼蛋白主要分布在卵殼外層,其豐富的二硫健使卵殼形成堅硬的外層結(jié)構(gòu),因此,3個后期卵殼蛋白的上調(diào)增加了Grk突變體卵殼的硬度,使其更難溶解。同時,卵殼基因具有嚴(yán)格的時期特異性,如果Grk通過延長表達(dá)時間來上調(diào)卵殼蛋白,則將會擾亂卵殼形態(tài)構(gòu)建的進(jìn)程,造成卵殼結(jié)構(gòu)的改變。另一方面,BmCho-17在正常型和雜合型卵殼中有表達(dá),但在純合型中丟失,且BmCho-17是中期卵殼蛋白,應(yīng)該在卵殼中層構(gòu)建中起作用。因此它在Grk純合型卵殼中的丟失勢必影響到中層卵殼的形態(tài)構(gòu)建。5.miRNA對卵殼基因表達(dá)調(diào)控分析卵殼基因表達(dá)有著嚴(yán)格的組織和時期特異性,其表達(dá)調(diào)控研究是最早的模式基因之一。但已報道的調(diào)控因子仍不能完全清楚地解釋數(shù)量龐大的卵殼基因的調(diào)控機(jī)制。為此,本研究分析了miRNA在卵殼基因表達(dá)調(diào)控中的角色,通過高通量測序,在家蠶蛹8天卵殼生成期的卵泡上皮細(xì)胞中鑒定到847個miRNA,其中包括399個已知miRNA和448個新鑒定的mi RNA。qPCR結(jié)果顯示,33個mi RNA在卵泡上皮細(xì)胞特異表達(dá)。靶基因預(yù)測顯示miRNA潛在的調(diào)控了所有類型的卵殼基因及其轉(zhuǎn)錄因子,分析也發(fā)現(xiàn),在miRNA對卵殼基因的調(diào)控中,存在著一個miRNA基于相同的靶位點(diǎn)序列調(diào)控一類卵殼基因的模式。miRNA與卵殼蛋白質(zhì)組整合分析發(fā)現(xiàn),miRNA也參與了編碼卵殼中其它結(jié)構(gòu)蛋白的基因的調(diào)控。雙熒光素酶實(shí)驗表明,bantam-3p調(diào)控了家蠶卵殼基因轉(zhuǎn)錄因子BmC/EBP的表達(dá)。本部分研究結(jié)果表明,miRNA參與了卵殼基因的表達(dá)調(diào)控。
[Abstract]:Insects are an important contributor to the biodiversity of the earth. In the long period of evolution, insects and human beings have formed a complex and close relationship. On the one hand, insects provide a large amount of material products for human beings, in which the Lepidoptera silkworm also creates a bright silk culture; on the other hand, insects are also given to people. The class of Orthoptera insects locusts have written a history of blood and tears in a human agricultural society. The main reason for the abundance of insects is the ability to spawn, and the number of eggs of most insects is up to hundreds. Therefore, the study of insect eggs will be the prevention and control of harmful insects, which will benefit the eggs. The improvement of quantity provides an important theoretical basis. The egg shell is a complex protective structure on the surface of the egg cell of the insect. The main component is egg shell protein and its encoding gene is the egg shell gene. This study focuses on the function and regulation of the egg shell gene. First, the egg shell gene of the silkworm was determined and its expression was drawn. The pattern map, using LC-MS/MS, analyzed the protein composition of the egg shell; secondly, in the functional study, the mutation mechanism of the egg shell gene mutant cinnamon ash egg (Grk) was analyzed. Finally, in the expression and regulation, the role of miRNA in the regulation of the expression of the egg shell gene was analyzed with miRNA as the research entry point. The main results are as follows: 1. the identification and evolution of the egg shell gene, the egg shell gene of the silkworm is a supergene family. All the members are located in a section of the genome on chromosome 2 (eggshell gene loci). The egg shell gene has been studied for nearly 40 years, and nearly one hundred egg shell genes have been identified. However, the high repetition sequence makes the egg. The sequencing of the shell gene site is very difficult and has not been completely sequenced so far. This has seriously hindered the comprehensive and systematic study of the egg shell genes. Therefore, this study adopted the strategy of BAC sequencing to obtain the full length sequence of the egg shell gene loci. First, the distribution of more than 200 BAC on the egg shell gene loci in the BAC Library of the silkworm was analyzed, and 7 can be screened. The BAC. of the complete egg shell gene site was sequenced by 7 BAC, and the egg shell gene loci of 871711 BP were sequenced and assembled. The gene site sequence of the egg shell gene was predicted by FGENESH software, and 127 egg shell genes and 5 non egg shell genes were annotated. The egg shell gene was labeled as BmCho-1~BmCho-127, including 36 early and 46. The medium-term and 45 late egg shell genes. The cDNA library of the two egg development period was used to further confirm the existence of the egg shell gene EST, and the annotated eggshell gene was confirmed reverse. The egg shell gene is mainly distributed on the genome in the form of gene pair (genepair). The two later egg shell genes are false bases due to the number of terminating codons in the coding region. Pseudogene. Evolutionary tree analysis shows that the same type of egg shell gene is clustered into a cluster, in which the early B egg shell gene (earlyb) is divided into two branches in the evolutionary tree, of which one and medium-term B egg shell gene (middleb) is clustered into a large branch. The expression pattern of the egg shell gene shows that 7 of the early B egg shell gene branch is in the expression pattern. The evolutionary tree analysis also revealed that the early egg shell gene had a fast evolution speed and the later egg shell gene was relatively conservative in evolution. The two pseudogenes bmcho-23 and bmcho-26 also experienced a rapid evolutionary speed. The identification of the complete egg shell gene loci was the comprehensive egg shell gene. In order to analyze the expression of the egg shell gene in the process of egg development, we have constructed the fine expression pattern of the egg shell gene of the silkworm, which is based on the analysis of the expression characteristics of the egg shell gene in the egg development process. First, we have divided the eggs of the 8 days of the pupae at 8 different developmental stages. The egg of the egg yolk generation period (vitellogenesis) has no egg shell gene expression, the egg is yellowish in this period; the egg shell generation period (choriogenesis) is the time of the egg shell gene sequence expression, and the egg color brightens by the formation of the egg shell, which is the symbol of the egg yolk and the egg shell generation period. The 11 developmental stages of i~xi were subdivided into 127 egg shell genes identified by RT-PCR. The results showed that the early and late eggshell genes were expressed in the early stage (i~iii) and late stage (ix~xi) of the eggshell period, while the medium-term eggshell was expressed in the whole eggshell period. DNA library search has identified the transcriptional transcripts of bmcho-1 and bmcho-96 in the spermary. In the follicle epithelial cells and the sperms, the bmcho-1 transcript has the same exon sequence. The first exon is different. The bmcho-1 transcriptional first exon is located in the intron of the follicle epithelial cell transcript. The bmcho-96 transcript in the sperm nest is transcribed. In the cDNA library of the home egg embryo, the bmcho-11 transcript is identified in the cDNA library of the eggs of the family silkworm eggs. The sequence of the transcriptional coding region in the embryo is 27 bases in the 5 'end than in the follicle epithelial cells, and 9 multiple coding sequences are predicted. In addition to the mature transcriptional transcript, the amino acid analysis found that in addition to the mature transcriptional transcript, there is a splice intermediate form (splicingintermediate), which contains 5 'UTR, exons, introns, 3' UTR and polyadenine sequence.3. egg white matter analysis by lc-ms/ms mass spectrometry, in P50 eggs 260 proteins are identified in the shell, including 88 egg shell proteins, 28 ovarian specific proteins (non egg shell proteins) and 144 other types of proteins. The silkworm egg shell gene is mainly distributed on the genome in the form of gene pair (genepair), each gene contains a Class A and one B gene, and two genes share the 5 'flanking promoter region. Domain, a and B genes are transcribed in the opposite direction. In the identified egg shell protein, the gene encoding B in the gene is more easily identified, suggesting that the bi-directional promoter may have stronger transcriptional activity to the B gene. A specific type of ovarian specific protein is also identified in the egg shell. The genes encoding this kind of protein are mainly distributed in number 2, No. 10, and 15. On chromosome number and chromosome 16, most of them are specific genes of the silkworm, which are unknown in function. 12 ovarian specific genes are distributed within the range of the 100kb upstream of the egg shell gene site of chromosome 2. 10 of them are encoded in the egg shell. Although their functions are not known, they are presumed to be expressed in the egg shell gene or in the egg shell. Structural form construction plays an important role in the mutation mechanism of the.4. silkworm egg (Grk). The Grk is a gray egg mutant caused by the mutation of the egg shell gene of the silkworm. The mutant gene is located in the egg shell gene locus (2-7.2). The phenotype is: the homogenous (grk/grk) egg is spherical and the fertilization rate is low; the heterotype (grk/+) ovum is normal and the egg color is The fertilization rate is normal, and the normal type (+ / +) egg color to the dark brown.Sem observation shows that there is no obvious difference in the surface of the three genotypes of Grk, but the egg shell and the oval holes are different. On the egg shell, the normal type of Grk is made up of the lamellar parallel to the egg cell, while the lamellar layer of the heterozygous egg shell is perpendicular to the layer. The phenotype of the surface of the egg cell; the middle layer of the homozygous egg shell has a greater degree of destruction and almost disorganized. On the oval structure, the Grk normal oval holes are surrounded by petal markings, the stripes of the inner layer protrude the oval surface, and the ovum has 4 oval orifice. The petal pattern around the heterozygote is obviously more than the normal type. The size of the markings in the inner layer is smaller and the number of the oval holes is normal; the markings at the oval holes are also smaller, the markings in the inner layer are almost no protruding phenotypes, the oval orifice is only 2.Grk normal, and the number of petals in the heterozygous and homozygous oval inner layer decreases in turn. By observing the Grk egg shell, we can infer the Grk process. The large change in the shell shell structure of the egg shell is the basis of the appearance of the grey egg phenotype. The decrease of the orifice of the ovum is the reason why the fertilization rate of the egg is greatly reduced. When the egg shell structure protein is extracted, the Grk normal type is found, the heterozygous type and the homozygous egg shell structure in the 8m urea / 35mmdtt lysate decreases in turn. Increasing the concentration of DTT on the basis of liquid, it will increase the solubility of Grk mutant, but can not completely dissolve. If increase of 1% SDS, it can completely dissolve the Grk mutant egg shell. This indicates that the changes in the eggshell structure of the Grk mutant may affect the dissolving of the eggshell protein of the three genotypes of the egg shell of the egg shell protein, the bmcho-20, bmcho-41, BM. The contents of cho-57, bmcho-62, bmcho-73 and bmcho-115 in normal Grk, heterozygous and homozygous egg shells are increased in turn, of which BmCho-20 and BmCho-115 are early egg shell proteins, BmCho-73 is medium egg shell protein, BmCho-41, BmCho-57 and BmCho-62 are later egg shell proteins. The late egg shell protein rich in cysteine is mainly distributed outside the egg shell. The rich two sulphur health causes the egg shell to form a hard outer structure. Therefore, the up-regulation of the 3 later egg shell proteins increases the hardness of the Grk mutant egg shell, making it more difficult to dissolve. At the same time, the egg shell gene has a strict period specificity. If Grk up-regulated the egg shell protein by prolonging the expression time, the eggshell gene will disrupt the formation of the egg shell morphology. On the other hand, BmCho-17 is expressed in the normal and heterozygous egg shells, but is lost in the homozygous type, and the BmCho-17 is the medium-term egg shell protein, which should play a role in the construction of the middle layer of the egg shell. Therefore, its loss in the Grk homozygous egg shell is bound to affect the form of the middle egg shell to construct the.5.miRNA to the egg shell. The gene expression regulation analysis of gene expression has strict tissue and period specificity, and its expression regulation is one of the earliest model genes. However, the regulatory factors that have been reported can not fully explain the regulation mechanism of a large number of egg shell genes. Therefore, this study analyzed the regulation of the expression of miRNA in the egg shell gene. Role, through high throughput sequencing, 847 miRNA were identified in the follicle epithelial cells of the 8 day egg shell generation period of the family silkworm chrysalis, including 399 known miRNA and 448 newly identified mi RNA.qPCR results, and 33 mi RNA were expressed in the follicle epithelial cells. The target gene predicted that miRNA potentially regulates all types of eggshell genes and Its transcriptional factor and analysis also found that in the regulation of the egg shell gene in miRNA, there is a miRNA integration analysis between the pattern.MiRNA and the egg shell protein group based on the same target site sequence, and the miRNA also participates in the regulation of the gene of other structural proteins in the encoding egg shell. The double luciferase experiment shows that Banta M-3P regulates the expression of BmC/EBP, a transcription factor of Bombyx mori eggshell. The results of this study show that miRNA is involved in the regulation of eggshell gene expression.
【學(xué)位授予單位】:西南大學(xué)
【學(xué)位級別】:博士
【學(xué)位授予年份】:2017
【分類號】:Q963

【相似文獻(xiàn)】

相關(guān)期刊論文 前10條

1 朱江,陳美,迮玉官;卵殼蛋白族的分子生物學(xué)研究[J];蠶業(yè)科學(xué);2000年S1期

2 李永嵐 ,夏邦穎 ,王維民 ,郭郛;昆蟲卵殼的晶態(tài)特征和卵殼蛋白纖維走向的研究[J];科學(xué)通報;1985年20期

3 夏邦穎,丁友珍;家蠶卵殼蛋白的紫外光譜性質(zhì)[J];蠶業(yè)科學(xué);1989年01期

4 黎雯,徐盈;團(tuán)頭魴卵殼蛋白的分離與純化[J];水生生物學(xué)報;2003年02期

5 夏邦穎;昆蟲卵殼的結(jié)構(gòu)和功能研究進(jìn)展[J];自然雜志;1982年04期

6 孫非;呂繼業(yè);白志毅;陳元霖;;四種蠶卵殼蛋白氨基酸組成比較研究[J];氨基酸雜志;1990年01期

7 朱綾;唐兆子;童華;;發(fā)育中卵殼結(jié)構(gòu)變化和呼吸功能的掃描電子顯微研究[J];武漢大學(xué)學(xué)報(自然科學(xué)版);1989年02期

8 夏邦穎;;馬尾松毛蟲卵殼的研究[J];電子顯微學(xué)報;1984年02期

9 夏邦穎;試論昆蟲卵的分類特征[J];昆蟲分類學(xué)報;1980年04期

10 夏邦穎;研究昆蟲卵殼的實(shí)踐意義[J];昆蟲知識;1982年01期

相關(guān)會議論文 前1條

1 王忠軍;許強(qiáng)華;;白氏文昌魚卵殼蛋白的分離與純化[A];2012年中國水產(chǎn)學(xué)會學(xué)術(shù)年會論文摘要集[C];2012年

相關(guān)博士學(xué)位論文 前2條

1 陳志偉;家蠶卵殼基因鑒定、功能及其表達(dá)調(diào)控研究[D];西南大學(xué);2017年

2 徐云敏;家蠶內(nèi)層卵殼蛋白及蠶卵致死突變體(l-e~m)突變機(jī)理研究[D];西南大學(xué);2013年

相關(guān)碩士學(xué)位論文 前1條

1 戚舒;褐飛虱卵殼的超微結(jié)構(gòu)及卵殼蛋白的分離與鑒定[D];中山大學(xué);2012年

,

本文編號:1980079

資料下載
論文發(fā)表

本文鏈接:http://sikaile.net/shoufeilunwen/jckxbs/1980079.html


Copyright(c)文論論文網(wǎng)All Rights Reserved | 網(wǎng)站地圖 |

版權(quán)申明:資料由用戶e1a3a***提供,本站僅收錄摘要或目錄,作者需要刪除請E-mail郵箱bigeng88@qq.com