熱力學(xué)敏感流體空化流動(dòng)三維數(shù)值模擬研究
本文選題:熱力學(xué)敏感流體 + 空化流動(dòng); 參考:《哈爾濱工業(yè)大學(xué)》2016年博士論文
【摘要】:近年來,隨著載人航天和深空探測的需要,對液體運(yùn)載火箭的推力提出了越來越高的要求。用作推進(jìn)劑的低溫流體在流經(jīng)推進(jìn)系統(tǒng)時(shí)容易發(fā)生空化,使得內(nèi)部流場變得不穩(wěn)定而引起強(qiáng)烈的機(jī)械振動(dòng),從而降低了液體火箭發(fā)動(dòng)機(jī)的可靠性和推力性能。用作進(jìn)劑的液氫和液氧等熱力學(xué)敏感流體介質(zhì)在空化過程表現(xiàn)出明顯的熱力學(xué)效應(yīng),使得空化流動(dòng)變得更加復(fù)雜。因此,掌握預(yù)測熱力學(xué)敏感流體空化流動(dòng)特性的數(shù)值計(jì)算方法以及獲得熱力學(xué)效應(yīng)對空化流動(dòng)影響機(jī)理具有重要理論意義和應(yīng)用價(jià)值。本文采用數(shù)值計(jì)算與試驗(yàn)數(shù)據(jù)相結(jié)合的方法,開展了熱力學(xué)敏感流體定常和非定常空化流動(dòng)三維數(shù)值模擬研究,主要研究內(nèi)容和成果如下:基于均質(zhì)平衡流模型,建立了計(jì)算熱力學(xué)敏感流體空化流動(dòng)問題的基本數(shù)學(xué)模型和數(shù)值方法。通過CEL(CFX Expression Language)語言對CFX軟件進(jìn)行二次開發(fā),將液氫、液氮以及氟化酮流體介質(zhì)的物理屬性隨溫度變化的關(guān)系函數(shù)引入到求解軟件中,在能量方程中通過添加能量源項(xiàng)的方法考慮了汽化潛熱的影響。同時(shí)將空化模型和湍流模型添加到CFX求解器中,并與基本控制方程耦合,形成了計(jì)算空化流動(dòng)問題的基本數(shù)值方法;跓崃W(xué)敏感流體定?栈鲃(dòng)特點(diǎn),評價(jià)了修正經(jīng)驗(yàn)常數(shù)和引入熱力學(xué)效應(yīng)的空化模型對熱力學(xué)敏感流體空化流動(dòng)的適用性,建立了計(jì)算熱力學(xué)敏感流體定常空化流動(dòng)的三維數(shù)值模擬方法。針對三種常用的空化模型,修正蒸發(fā)常數(shù)和凝結(jié)常數(shù)后的Zwart空化模型和Merkle空化模型在預(yù)測空化流場溫度和壓力方面優(yōu)于Kunz模型,但是數(shù)值計(jì)算結(jié)果與試驗(yàn)數(shù)據(jù)仍有一定的差異;谄簝上嚅g的熱擴(kuò)散方程和能量方程給出了考慮熱力學(xué)效應(yīng)的修正Zwart空化模型,改進(jìn)后的Zwart空化模型實(shí)現(xiàn)了對熱力學(xué)敏感流體定?栈鲌龅臏(zhǔn)確預(yù)測;诒疚慕⒌挠(jì)算定常空化流動(dòng)數(shù)值方法,開展了不同熱力學(xué)敏感流體定?栈鲃(dòng)特性研究,掌握了空化熱力學(xué)效應(yīng)影響機(jī)理。通過對液氫、液氮繞圓頭水翼和尖頂拱模型開展的三維定?栈鲃(dòng)計(jì)算分析,獲得了空化流場溫度、壓強(qiáng)、混合區(qū)液/汽體積分?jǐn)?shù)、兩相間質(zhì)量轉(zhuǎn)化率以及典型熱力學(xué)參數(shù)變化特性,給出了流體介質(zhì)物理屬性對空化流場特性影響規(guī)律,揭示了空化熱力學(xué)效應(yīng)影響機(jī)理。基于空化湍流流場流動(dòng)特點(diǎn),對PANS湍流模型中控制參數(shù)進(jìn)行了敏感性分析,建立了計(jì)算熱力學(xué)敏感流體非定?栈鲃(dòng)的三維數(shù)值模擬方法。通過減小PANS湍流模型中的控制參數(shù),實(shí)現(xiàn)從雷諾時(shí)均化RANS方法到直接數(shù)值模擬DNS方法的過渡,改善了對空化流場湍流粘度和小尺度旋渦的描述。通過與試驗(yàn)數(shù)據(jù)對比,驗(yàn)證了改變控制參數(shù)的PANS湍流模型對熱力學(xué)敏感流體非定?栈鲃(dòng)空泡演變過程和流動(dòng)細(xì)節(jié)預(yù)測的有效性;诒疚慕⒌挠(jì)算非定?栈鲃(dòng)數(shù)值方法,開展了氟化酮、液氫以及液氮三種介質(zhì)繞帶攻角水翼非定常空化流動(dòng)研究,掌握了空化流場非定?张菅葑儥C(jī)理。通過分析空化流場旋渦結(jié)構(gòu)、渦量傳輸、流體動(dòng)力、速度矢量以及溫度梯度變化等特性,揭示了熱力學(xué)效應(yīng)下空化流場空泡生成-發(fā)展-脫落-潰滅復(fù)雜的演變過程機(jī)理。
[Abstract]:In recent years, with the need of manned spaceflight and deep space exploration, the thrust of the liquid launch vehicle is becoming more and more demanding. The low temperature fluid used as the propellant is easy to cavitation in the propulsion system, which makes the internal flow field unstable and causes strong mechanical vibration, thus reducing the reliability of the liquid rocket engine. The thermodynamic effect of the liquid hydrogen and liquid oxygen, which is used as the liquid hydrogen and liquid oxygen, shows obvious thermodynamic effects in the cavitation process, which makes the cavitation flow more complicated. Therefore, the numerical calculation method for predicting the characteristics of the cavitation flow in the thermodynamic sensitive fluid and the mechanism of the effect of the thermodynamic effect on the cavitation flow have been obtained. The main research contents and results are as follows: Based on the homogeneous equilibrium flow model, the problem of calculating the thermodynamically sensitive fluid cavitation flow problem is established. The basic mathematical model and numerical method are developed for two times through the CEL (CFX Expression Language) language. The relation function of the physical properties of liquid hydrogen, liquid nitrogen and fluoridated fluid medium with the temperature change is introduced into the solution software. The influence of the latent heat of vaporization is considered by adding energy source term in the energy equation. At the same time, the cavitation model and turbulence model are added to the CFX solver and coupled with the basic control equations. The basic numerical method for calculating the cavitation flow problem is formed. Based on the characteristics of the constant cavitation flow of the thermodynamic sensitive fluid, the cavitation flow model of the modified empirical constant and the thermodynamic effect is evaluated for the thermodynamically sensitive fluid flow. For three commonly used cavitation models, the Zwart cavitation model and the Merkle cavitation model are superior to the Kunz model in predicting the temperature and pressure of the cavitation flow field. The experimental data still have a certain difference. Based on the heat diffusion equation and the energy equation between the two phases of the vapor and liquid, the modified Zwart cavitation model considering the thermodynamic effect is given. The improved Zwart cavitation model realizes the accurate prediction of the steady cavitation flow field of the thermodynamically sensitive fluid. The characteristics of constant cavitation flow of different thermodynamically sensitive fluids have been studied, and the effect mechanism of the cavitation thermodynamic effect is mastered. The temperature, pressure, liquid / vapor volume fraction of the mixing zone and the mass conversion rate between the two phases are obtained by the calculation and analysis of the three-dimensional steady cavitation flow of liquid hydrogen, liquid nitrogen around the round head hydrofoil and the spires arch model. The influence of the physical properties of the fluid medium on the characteristics of the cavitation flow field is given and the influence mechanism of the cavitation thermodynamic effect is revealed. Based on the flow characteristics of the cavitation turbulent flow field, the sensitivity of the control parameters in the PANS turbulence model is analyzed and the unsteady cavitation flow is built to calculate the thermodynamically sensitive fluid. By reducing the control parameters in the PANS turbulence model, the transition from the Reynolds averaged RANS method to the direct numerical simulation DNS method is realized. The description of the turbulence viscosity and the small scale vortex in the cavitation flow field is improved. By comparing with the experimental data, the PANS turbulence model that changes the control parameters is verified by the thermodynamic model. The evolution process of the unsteady cavitation flow and the effectiveness of the flow detail prediction are studied. Based on the numerical method of unsteady cavitation flow, the unsteady cavitation flow of the hydrofoil, liquid hydrogen and liquid nitrogen with three kinds of medium angle attack angle hydrofoil is studied. The mechanism of the unsteady cavitation evolution of the cavitation flow field is grasped. The characteristics of vortex structure, vorticity transmission, fluid dynamics, velocity vector and temperature gradient change in cavitation flow field are analyzed, and the mechanism of the complex evolution process of cavitation flow formation, development, exfoliation and collapse under the thermodynamic effect is revealed.
【學(xué)位授予單位】:哈爾濱工業(yè)大學(xué)
【學(xué)位級(jí)別】:博士
【學(xué)位授予年份】:2016
【分類號(hào)】:O35
【相似文獻(xiàn)】
相關(guān)期刊論文 前10條
1 倪漢根,黃建波,徐福生;繞流體初生空化數(shù)的概率估計(jì)[J];水利學(xué)報(bào);1986年10期
2 許衛(wèi)新,程貫一,潘森森;空化起始的理論預(yù)測——模糊空化系統(tǒng)[J];力學(xué)學(xué)報(bào);1987年06期
3 吳建華;柴恭純;;垂直匯流漩渦空化的聲測研究[J];水利水運(yùn)科學(xué)研究;1989年03期
4 賀成龍;吳建華;劉文莉;;空化應(yīng)用研究進(jìn)展綜述[J];嘉興學(xué)院學(xué)報(bào);2008年03期
5 潘森森;空化機(jī)理的近代研究[J];力學(xué)進(jìn)展;1979年04期
6 肖天鐸;深水緩坡突體和升臺(tái)的初生空化數(shù)顯解式[J];水利學(xué)報(bào);1985年08期
7 夏維洪,孫景琴,賈春英;減壓模型的初生空化相似律[J];水利學(xué)報(bào);1985年09期
8 楊志明,李煒;關(guān)于消失空化的機(jī)理[J];水動(dòng)力學(xué)研究與進(jìn)展;1987年04期
9 鄭國華 ,黃熾元;計(jì)入水流阻力的等空化數(shù)曲線計(jì)算[J];石河子農(nóng)學(xué)院學(xué)報(bào);1989年02期
10 彭曉星,王力,潘森森;水中空氣含量對旋渦空化的影響[J];水動(dòng)力學(xué)研究與進(jìn)展;1989年04期
相關(guān)會(huì)議論文 前8條
1 張偉;張瑞平;陳建業(yè);熊煒;張小斌;邱利民;;基于動(dòng)態(tài)空化模型繞數(shù)值研究扭曲三維翼型的非穩(wěn)態(tài)空化過程[A];第二十五屆全國水動(dòng)力學(xué)研討會(huì)暨第十二屆全國水動(dòng)力學(xué)學(xué)術(shù)會(huì)議文集(下冊)[C];2013年
2 彭曉星;洪方文;;25~(th)ITTC空化專家委員會(huì)報(bào)告綜述[A];2008年船舶水動(dòng)力學(xué)學(xué)術(shù)會(huì)議暨中國船舶學(xué)術(shù)界進(jìn)入ITTC30周年紀(jì)念會(huì)論文集[C];2008年
3 曹彥濤;彭曉星;徐良浩;;繞三維扭曲水翼云空化演化數(shù)值模擬[A];第十三屆全國水動(dòng)力學(xué)學(xué)術(shù)會(huì)議暨第二十六屆全國水動(dòng)力學(xué)研討會(huì)論文集——F船舶與海洋工程流體力學(xué)[C];2014年
4 洪方文;褚學(xué)森;彭曉星;顏開;劉登成;陳瑋琪;;中國船舶科學(xué)研究中心近期空化流動(dòng)研究進(jìn)展[A];第十一屆全國水動(dòng)力學(xué)學(xué)術(shù)會(huì)議暨第二十四屆全國水動(dòng)力學(xué)研討會(huì)并周培源誕辰110周年紀(jì)念大會(huì)文集(上冊)[C];2012年
5 易燦;李根生;張定國;;圍壓下噴嘴空化起始能力的實(shí)驗(yàn)研究[A];第十八屆全國水動(dòng)力學(xué)研討會(huì)文集[C];2004年
6 楊慶;張建民;戴光清;李鵬;;高速突擴(kuò)流空化初生及比尺效應(yīng)試驗(yàn)研究[A];第二十一屆全國水動(dòng)力學(xué)研討會(huì)暨第八屆全國水動(dòng)力學(xué)學(xué)術(shù)會(huì)議暨兩岸船舶與海洋工程水動(dòng)力學(xué)研討會(huì)文集[C];2008年
7 彭曉星;;發(fā)展空化及其不穩(wěn)定現(xiàn)象研究[A];第二十五屆全國水動(dòng)力學(xué)研討會(huì)暨第十二屆全國水動(dòng)力學(xué)學(xué)術(shù)會(huì)議文集(上冊)[C];2013年
8 陳笑然;閻兆立;陳杰;程曉斌;李曉東;;水泵空化的超聲主動(dòng)探測方法[A];泛在信息社會(huì)中的聲學(xué)——中國聲學(xué)學(xué)會(huì)2010年全國會(huì)員代表大會(huì)暨學(xué)術(shù)會(huì)議論文集[C];2010年
相關(guān)博士學(xué)位論文 前10條
1 王健;水力裝置空化空蝕數(shù)值計(jì)算與試驗(yàn)研究[D];江蘇大學(xué);2015年
2 趙宇;葉頂間隙旋渦空化數(shù)值計(jì)算模型與流動(dòng)機(jī)理研究[D];北京理工大學(xué);2016年
3 陳廣豪;附著型非定?栈黧w動(dòng)力特性與機(jī)理研究[D];北京理工大學(xué);2016年
4 張寧;離心泵內(nèi)部非穩(wěn)態(tài)流動(dòng)激勵(lì)特性研究[D];江蘇大學(xué);2016年
5 孫鐵志;熱力學(xué)敏感流體空化流動(dòng)三維數(shù)值模擬研究[D];哈爾濱工業(yè)大學(xué);2016年
6 楊慶;空化初生機(jī)理及比尺效應(yīng)研究[D];四川大學(xué);2005年
7 王柏秋;水下高速航行體非定?栈鲌鰯(shù)值計(jì)算[D];哈爾濱工業(yè)大學(xué);2013年
8 李曉俊;離心泵葉片前緣空化非定常流動(dòng)機(jī)理及動(dòng)力學(xué)特性研究[D];江蘇大學(xué);2013年
9 楊靜;混流式水輪機(jī)尾水管空化流場研究[D];中國農(nóng)業(yè)大學(xué);2013年
10 郭關(guān)柱;強(qiáng)剪切流變儀的研制及剪切空化的實(shí)驗(yàn)研究[D];浙江大學(xué);2008年
相關(guān)碩士學(xué)位論文 前10條
1 黃旭;表面特性對繞水翼空化流動(dòng)影響的研究[D];北京理工大學(xué);2015年
2 冉文q,
本文編號(hào):1947227
本文鏈接:http://sikaile.net/shoufeilunwen/jckxbs/1947227.html