天堂国产午夜亚洲专区-少妇人妻综合久久蜜臀-国产成人户外露出视频在线-国产91传媒一区二区三区

基于實時模擬信息反饋的湍流擴(kuò)散火焰數(shù)值模擬研究

發(fā)布時間:2018-05-27 04:30

  本文選題:火災(zāi) + 實時模擬信息反饋。 參考:《中國科學(xué)技術(shù)大學(xué)》2016年博士論文


【摘要】:本質(zhì)上來說,火災(zāi)是一種湍流燃燒現(xiàn)象。湍流燃燒的核心問題是研究湍流混合與復(fù)雜化學(xué)在多個時間-空間尺度上的相互作用關(guān)系。研究湍流混合與復(fù)雜化學(xué)的相互作用機(jī)理,有助于對火災(zāi)動力學(xué)更深層次的理解,有助于特殊工況下火災(zāi)模型的開發(fā)。研究湍流混合與復(fù)雜化學(xué)相互作用關(guān)系,首先需要海量的、包含耗散尺度湍流信息的反應(yīng)流數(shù)據(jù)。本文采用一維湍流模型(ODT)來獲取高保真數(shù)據(jù)集。ODT模型能夠分辨Kolmogorov尺度上的湍流脈動信息,在耦合復(fù)雜化學(xué)計算時比多維直接模擬的計算代價要低得多。由于化學(xué)反應(yīng)流是典型的變密度流,本文在原始ODT程序的基礎(chǔ)上,綜合考慮多維速度分量及密度變化對隨機(jī)渦事件的影響,開發(fā)了變密度版ODT程序,并通過與實驗值對比驗證了變密度ODT程序的有效性?煞直婧纳⒊叨韧牧餍畔⒌母呔萇DT數(shù)值平臺,為進(jìn)一步分析湍流-化學(xué)相互作用關(guān)系和構(gòu)建經(jīng)驗低維流形提供了健壯的數(shù)據(jù)庫。研究湍流混合與復(fù)雜化學(xué)相互作用關(guān)系,還需要高效的、精準(zhǔn)的反應(yīng)流數(shù)據(jù)分析方法。本文構(gòu)建了基于擴(kuò)展定義的Damkohler數(shù)和拉格朗日示蹤方法的高精度計算燃燒分析平臺,從時間尺度關(guān)系出發(fā),解耦湍流混合與化學(xué)反應(yīng)的相互作用關(guān)系。本文應(yīng)用ODT程序數(shù)值模擬了CO合成氣湍流擴(kuò)散燃燒過程,結(jié)合化學(xué)爆炸模式分析(CEMA)理論,建立了基于Damkohler數(shù)的湍流擴(kuò)散火焰局部熄火重燃情節(jié)分析方法。結(jié)果顯示,熄火區(qū)可以由大的、負(fù)的Damkohler數(shù)表示。此外,本文還從時間演化角度對拉格朗日示蹤單元的爆炸指數(shù)(EI)進(jìn)行了深入討論。通過對熄火持續(xù)時間的區(qū)分,定義了兩種不同的湍流擴(kuò)散火焰局部熄火情節(jié)。通過對重燃過程爆炸指數(shù)的分析,定義了兩種不同的湍流擴(kuò)散火焰重燃機(jī)理:預(yù)混火焰?zhèn)鞑ブ厝记楣?jié)對應(yīng)著較長時間的預(yù)熱過程及較高的溫度爆炸指數(shù),且重燃過程相對緩慢;獨立火焰面的重燃情節(jié)對應(yīng)著較高的自由基爆炸指數(shù)和較小的溫度梯度,且重燃過程相對較快。分析是為了更加準(zhǔn)確、高效的模擬湍流燃燒現(xiàn)象。在不同的湍流擴(kuò)散燃燒區(qū)內(nèi),主導(dǎo)因素差異巨大,這也對反應(yīng)源項的封閉模型產(chǎn)生不同的要求。因此,本文提出基于實時模擬信息反饋的湍流擴(kuò)散火焰模擬方法。該方法利用實時模擬數(shù)據(jù)進(jìn)行分析,并反饋診斷信息到主程序的計算中:在積分反應(yīng)源項時,根據(jù)分析的結(jié)果選擇合適的模型進(jìn)行封閉。實時反饋的信息為局部Damkohler數(shù),可由化學(xué)爆炸模式分析(CEMA)和局部標(biāo)量耗散率得到。依據(jù)反饋的Damkohler數(shù),可以確定具體的湍流擴(kuò)散火焰燃燒區(qū),進(jìn)而根據(jù)各個燃燒區(qū)的特點選擇恰當(dāng)?shù)姆磻?yīng)源項封閉模型:位于火焰面燃燒區(qū)時(Da≥DaLFA),可以使用基于化學(xué)制表的穩(wěn)態(tài)層流火焰面模型進(jìn)行封閉;位于熄火區(qū)時(Da≤1),此時采用基于Arrhenius方程的有限速率模型進(jìn)行封閉:位于非穩(wěn)態(tài)燃燒區(qū)時(1DaDaLFA),化學(xué)時間尺度相對于混合時間尺度來說是不能忽略的,火焰面模型也不再適用。本文在ODT程序的基礎(chǔ)上嵌入了基于實時模擬信息反饋的模擬程序,并通過與原始ODT程序結(jié)果及實驗值的對比,驗證了基于實時信息反饋混合封閉模型的正確性。隨后,本文又從湍流燃燒低維流形理論的角度對混合封閉模型進(jìn)行了優(yōu)化。本質(zhì)上說,層流火焰面模型是一類基于假設(shè)條件的低維流形。本文摒棄了這種不利的前提條件,直接從高保真的模擬數(shù)據(jù)出發(fā),構(gòu)建了經(jīng)驗流形來替代穩(wěn)態(tài)層流火焰面模型。由于直接來源于燃燒數(shù)據(jù)的分析,使得經(jīng)驗流形也能夠?qū)Ψ欠(wěn)態(tài)湍流燃燒區(qū)進(jìn)行封閉;也使得基于經(jīng)驗流形的混合封閉模型對自由基組分的預(yù)測精度大大提高。此外,在構(gòu)建經(jīng)驗流形時可以使用單次ODT模擬數(shù)據(jù),且構(gòu)建的經(jīng)驗流形對射流雷諾數(shù)、臨界Damkohler數(shù)等條件依賴性較小。這些優(yōu)點進(jìn)一步擴(kuò)大了基于實時信息反饋混合封閉模型的使用范圍。本文主要的創(chuàng)新點如下:構(gòu)建了基于Damkohler數(shù)和拉格朗日示蹤方法的高精度計算燃燒分析平臺,并據(jù)此鑒定、區(qū)分了不同情節(jié)的湍流擴(kuò)散火焰的局部熄火重燃現(xiàn)象及其機(jī)理;構(gòu)建了基于實時模擬信息反饋的湍流擴(kuò)散火焰混合封閉模型,并從經(jīng)驗低維流形的角度進(jìn)一步優(yōu)化了混合封閉模型,通過與實驗值及原始ODT程序的對比,驗證了混合封閉模型的有效性。
[Abstract]:In essence, fire is a turbulent combustion phenomenon. The core problem of turbulent combustion is to study the interaction between turbulent mixing and complex chemistry at multiple time and space scales. The study of the interaction mechanism of turbulent mixing and complex chemistry helps to understand the deeper level of fire dynamics and help fire in special conditions. The development of the disaster model is to study the interaction of turbulent mixing and complex chemistry. First, it needs mass, including the reaction flow data of the dissipative scale turbulence information. In this paper, the one-dimensional turbulence model (ODT) is used to obtain the high fidelity data set.ODT model to distinguish the turbulence fluctuation information on the Kolmogorov scale, and in the coupled complex chemical calculation. Because the chemical reaction flow is a typical variable density flow, based on the original ODT program, the variable density version ODT program is developed on the basis of the original ODT program, considering the influence of the multidimensional velocity component and the density change on the random vortex event, and the effectiveness of the variable density ODT program is verified by comparison with the experimental data. The high precision ODT numerical platform which can distinguish the dissipative scale turbulence information provides a robust database for further analysis of the turbulent chemical interaction relationship and the construction of the empirical low dimensional manifolds. The study of the interaction of turbulent mixing and complex chemistry also requires efficient and accurate analysis of the reaction flow data. This paper is built on the basis of this paper. The Damkohler number and the Lagrange tracer method are extended to calculate the high precision combustion analysis platform. From the time scale relation, the interaction relationship between turbulent mixing and chemical reaction is decoupled. In this paper, the turbulent diffusion combustion process of CO syngas is numerically simulated by ODT program, and the theory of chemical explosion mode analysis (CEMA) is established and the theory of chemical explosion mode analysis is established. Based on the Damkohler number, the partial flameout plot analysis method of the turbulent diffusion flame is based on the Damkohler number. The results show that the quenching zone can be expressed by the large and negative Damkohler numbers. In addition, the explosion index of the Lagrange tracer unit is discussed in depth from the time evolution point of view. By distinguishing the duration of the flameout, two kinds of different kinds are defined. Two different turbulent diffusion flame reburning mechanisms are defined by the analysis of the explosion exponent of the reburning process. The premixed flame propagation plot corresponds to a long time preheating process and a higher temperature explosion index, and the reignition process is relatively slow; the heavy burning of the independent flame surface is the same. The section corresponds to the higher free radical explosion index and the smaller temperature gradient, and the reignition process is relatively fast. The analysis is to be more accurate and efficient in simulating the turbulent combustion phenomenon. In the different turbulent diffusion combustion regions, the dominant factors vary greatly. This also produces different requirements for the sealing model of the source terms. Therefore, this paper puts forward the basis of this paper. The method of turbulent diffusion flame simulation in real time simulated information feedback. This method uses real time analog data to analyze and feedback the diagnosis information to the calculation of the main program: when integrating the source term of the response source, the appropriate model is selected according to the results of the analysis. The information of real time feedback is a local Damkohler number, which can be made by a chemical explosion model. The CEMA and the local scalar dissipation rate are obtained. According to the Damkohler number of the feedback, the specific turbulent diffusion flame combustion zone can be determined, and then the appropriate source term closure model is chosen according to the characteristics of each combustion region: at the flame area (Da > DaLFA), the steady-state laminar flame surface model based on chemical tabulation can be used. The type is closed; at the time of the flameout area (Da < 1), the finite rate model based on the Arrhenius equation is used at this time to be closed: in the unsteady combustion zone (1DaDaLFA), the chemical time scale can not be ignored with respect to the mixing time scale, and the flame surface model is no longer applicable. This paper is embedded on the basis of the ODT program. The simulation program of information feedback is simulated in real time, and the correctness of the hybrid closed model based on real time information feedback is verified by comparison with the original ODT program results and experimental values. Then, this paper also optimizes the mixed closed model from the angle of turbulent combustion low dimensional manifold theory. In essence, laminar flame surface model is a class of models. In this paper, based on hypothetical low dimensional manifolds, this paper discarded this unfavorable condition and constructed an empirical manifold to replace the steady state laminar flame surface model directly from the high fidelity simulation data. The empirical manifolds can also be closed to the unsteady turbulent combustion zone because of the direct source of the combustion data. The prediction accuracy of the free radical component is greatly improved by the mixed closure model of the empirical manifold. In addition, the single ODT simulation data can be used in the construction of the empirical manifold, and the established empirical manifolds are less dependent on the Reynolds number and the critical Damkohler number. These advantages extend the mixed closure based on the real-time information feedback. The main innovation points of this paper are as follows: the high precision calculation combustion analysis platform based on Damkohler number and Lagrange tracer method is constructed, and the local quenching reburning phenomenon of turbulent diffusion flames in different plots and its mechanism are identified by this method, and the turbulent expansion based on real time simulation information feedback is constructed. The mixed closed model is optimized and the mixed closure model is further optimized from the angle of empirical low dimensional manifolds. The effectiveness of the hybrid closed model is verified by comparison with the experimental values and the original ODT program.
【學(xué)位授予單位】:中國科學(xué)技術(shù)大學(xué)
【學(xué)位級別】:博士
【學(xué)位授予年份】:2016
【分類號】:O357.5

【相似文獻(xiàn)】

相關(guān)期刊論文 前6條

1 聶俊嵐;吳凌霞;郭棟梁;唐勇;;液固交互過程中固體破碎現(xiàn)象的實時模擬[J];小型微型計算機(jī)系統(tǒng);2013年09期

2 林如丹;何雄;劉俊;;煙氣脫硫?qū)崟r模擬監(jiān)控軟件的設(shè)計[J];科技情報開發(fā)與經(jīng)濟(jì);2007年18期

3 康蘇海;;利用GDI+實現(xiàn)二維動態(tài)流場實時模擬[J];水道港口;2009年06期

4 唐勇;趙文晶;呂夢雅;;SPH擴(kuò)展方法實現(xiàn)液體與固體交互實時模擬[J];小型微型計算機(jī)系統(tǒng);2012年09期

5 唐勇;陳靜;呂夢雅;;基于SPH及形狀約束的粘彈性流體的實時模擬[J];小型微型計算機(jī)系統(tǒng);2013年11期

6 ;[J];;年期

相關(guān)會議論文 前5條

1 李靜海;;過程工程實時模擬——夢想還是現(xiàn)實?[A];中國化學(xué)會第27屆學(xué)術(shù)年會化學(xué)的創(chuàng)新與發(fā)展論壇摘要集[C];2010年

2 楊先衛(wèi);張甫寬;;2D剛體碰撞的實時模擬[A];'2006系統(tǒng)仿真技術(shù)及其應(yīng)用學(xué)術(shù)交流會論文集[C];2006年

3 馬明全;周明全;耿國華;;分布式大規(guī)模交通網(wǎng)絡(luò)實時模擬系統(tǒng)[A];2006年全國開放式分布與并行計算機(jī)學(xué)術(shù)會議論文集(三)[C];2006年

4 李娟;霍亮生;龔堰玨;;發(fā)動機(jī)工況實時模擬系統(tǒng)硬件電路的設(shè)計[A];企業(yè)應(yīng)用集成系統(tǒng)與技術(shù)學(xué)術(shù)研究會論文集[C];2006年

5 王槐欣;萬華根;肖書星;金小剛;彭群生;;大規(guī)模音樂噴泉的實時模擬[A];中國計算機(jī)圖形學(xué)進(jìn)展2008--第七屆中國計算機(jī)圖形學(xué)大會論文集[C];2008年

相關(guān)博士學(xué)位論文 前2條

1 王磊;基于實時模擬信息反饋的湍流擴(kuò)散火焰數(shù)值模擬研究[D];中國科學(xué)技術(shù)大學(xué);2016年

2 張龍;大規(guī)模森林場景的樹木搖曳效果實時模擬[D];浙江大學(xué);2008年

相關(guān)碩士學(xué)位論文 前10條

1 李f[;列車實時模擬運行系統(tǒng)研究[D];大連交通大學(xué);2015年

2 張雄祥;剛體破碎特效實時模擬技術(shù)研究與實現(xiàn)[D];電子科技大學(xué);2014年

3 王吉林;復(fù)雜過程實時模擬技術(shù)研究[D];浙江工業(yè)大學(xué);2009年

4 吳凌霞;液固交互過程中固體破碎現(xiàn)象的實時模擬研究[D];燕山大學(xué);2012年

5 舒丹;基于網(wǎng)格粒子的水波實時模擬[D];華東師范大學(xué);2010年

6 于亞莉;大規(guī)模場景中真實感風(fēng)場作用的實時模擬研究[D];電子科技大學(xué);2011年

7 吉祥;大規(guī)模剛體碎裂實時模擬的研究與實現(xiàn)[D];電子科技大學(xué);2013年

8 周珊珊;大規(guī)模群體運動的實時模擬研究與實現(xiàn)[D];電子科技大學(xué);2010年

9 李榕;大規(guī)模場景中剛體破壞實時模擬研究與實現(xiàn)[D];電子科技大學(xué);2011年

10 陳軼;基于GPU的三維流體實時模擬[D];吉林大學(xué);2007年

,

本文編號:1940439

資料下載
論文發(fā)表

本文鏈接:http://sikaile.net/shoufeilunwen/jckxbs/1940439.html


Copyright(c)文論論文網(wǎng)All Rights Reserved | 網(wǎng)站地圖 |

版權(quán)申明:資料由用戶842e8***提供,本站僅收錄摘要或目錄,作者需要刪除請E-mail郵箱bigeng88@qq.com