導電聚吡咯生物活性界面構建及用于細胞行為的阻抗譜檢測—朝向細胞電子學
本文選題:聚吡咯 + 電化學阻抗譜; 參考:《重慶醫(yī)科大學》2016年博士論文
【摘要】:本項目提出的“細胞電子學”借鑒于Joseph Wang于1999年提出的“基因電子學”(genoelectronics)一詞!盎螂娮訉W”用于描述DNA分子生物識別系統(tǒng)與電子系統(tǒng)間的耦合界面,目的在于將DNA特異性識別反應直接轉換為電信號。本項目提出的“細胞電子學”在于期望構建出活細胞生物系統(tǒng)與電子系統(tǒng)間的耦合界面,實現(xiàn)細胞生物系統(tǒng)和電子系統(tǒng)間信號雙向傳遞,并用于細胞生物學行為的檢測(將細胞狀態(tài)信息轉變?yōu)殡娦盘?和細胞生物學行為的調控(外部電學信號控制細胞狀態(tài))。由于“細胞電子學”研究涉及眾多學科領域,如材料學、電子學、細胞生物學、表面物理化學等,因此研究充滿挑戰(zhàn)和期許。聚吡咯,一種新型共軛性導電聚合物材料,為細胞電子學研究提供了契機。一方面聚吡咯能夠提供生物活性的表面以支持貼壁性細胞粘附與增殖,另一方面聚吡咯作為優(yōu)良的“分子導線”將電子學系統(tǒng)與細胞生物學系統(tǒng)相連接。在此基礎上,本論文工作集中在利用聚吡咯的摻雜機制構建具有不同性能的細胞生物學系統(tǒng)-電子學檢測系統(tǒng)間的耦合界面,以此實現(xiàn)對細胞生物學行為的調控并將細胞生物行為學信息單向轉化為電子阻抗學信息,并進一步構建出細胞阻抗生物傳感器實現(xiàn)細胞生物學行為檢測,為未來發(fā)展細胞電子學發(fā)展舔磚加瓦。為此,我們做了以下四個方面的研究工作:(1)設計了一種基于感光干膜-銦錫氧化物(Dry film photoresist-indium tin oxide,DFP-ITO)的簡易細胞-阻抗譜電子檢測系統(tǒng)耦合界面實現(xiàn)細胞生物行為學信息檢測。我們發(fā)現(xiàn):不同直徑DFP-ITO電極具有相似的阻抗特性;充分固化的感光干膜表面適宜A549細胞粘附且無明顯的細胞毒性;基于DFP-ITO電極耦合界面構建的細胞阻抗傳感器能夠通過阻抗譜技術能夠解析A549細胞粘附、增殖過程中的細胞質膜電容、細胞-細胞間隙電阻、細胞-ITO電極間隙電阻變化。(2)在銦錫氧化物(ITO)微電極表面通過電化學循環(huán)伏安技術電沉積聚吡咯(PPy)膜制備PPy-ITO微電極,并以此為細胞-阻抗譜電子檢測系統(tǒng)耦合界面實現(xiàn)細胞生物行為學信息檢測。結果表明:與裸ITO微電極相比,最優(yōu)參數(shù)制備的PPy-ITO微電極(電沉積5個循環(huán)數(shù))具有更優(yōu)的電阻抗性質和細胞生物相容性;赑Py-ITO微電極耦合界面的細胞阻抗生物傳感器能夠解析A549細胞粘附增殖及上皮間充質轉變(EMT)過程中細胞質膜電容、細胞-細胞間隙電阻、細胞-聚吡咯膜間隙電阻變化檢測。(3)構建一種基于氧化石墨烯/聚吡咯-銦錫氧化物(Graphene oxide/polypyrrole-Indium Tin Oxide,GO/PPy-ITO)微電極的細胞阻抗生物傳感器并用于細胞粘附增殖行為學檢測。結果顯示:ITO微電極表面上電沉積的GO/PPy納米復合物表面平整,分布大量的微孔結構;電化學實驗結果顯示GO/PPy-ITO微電極比裸ITO微電極具有更低的阻抗特征和更高的電化學活性;GO/PPy比純PPy膜更能促進A549細胞粘附、鋪展和增殖;GO/PPy-ITO微電極表面A549細胞的粘附增殖行為改變電極系統(tǒng)的阻抗譜特征,通過對阻抗譜數(shù)據(jù)進行等效電路擬合分析獲得細胞粘附增殖行為學信息。(4)構建一種基于聚吡咯/RGD-銦錫氧化物(PPy/RGD-ITO)微電極的細胞阻抗生物傳感器用于細胞增殖和細胞毒性檢測。結果表明:相比ITO電極和PPy/PSS膜,PPy/RGD膜更能促進A549細胞的鋪展、粘附和增殖;赑Py/RGD-ITO微電極構建的細胞阻抗生物傳感器一方面可解析細胞增殖過程中細胞質膜電容、細胞-細胞間隙電阻、細胞-聚吡咯膜間隙電阻變化,另一方面可定量分析重樓皂苷I的濃度與細胞毒性間的關系。
[Abstract]:The "cell Electronics" proposed in this project is borrowed in view of the word "genoelectronics" (genoelectronics), proposed by Joseph Wang in 1999. "Gene Electronics" is used to describe the coupling interface between the DNA molecular biometric system and the electronic system. The purpose is to convert the specific recognition reaction of DNA to the electrical signal directly. "Cell Electronics" is expected to build the coupling interface between the living cell biological system and the electronic system, realize the two-way signal transmission between the cell biological system and the electronic system, and use the detection of cell biological behavior (transforming the cell state information into the electrical signal) and the regulation of cell biological behavior (external electrical signal control is fine. The research is full of challenges and expectations, such as materials, electronics, cell biology, surface physical chemistry, and so on. Polypyrrole, a new type of conjugated conductive polymer material, provides an opportunity for cell electronics research. On the one hand polypyrrole can provide biological activity. On the other hand, polypyrrole, as an excellent "molecular wire", connects the electronic system with the cell biological system. On the basis of this, this work focuses on the construction of a cell biological system - electronic detection system with different properties by the doping mechanism of polypyrrole. The coupling interface is used to control the biological behavior of cells and transform the cellular biobehavioral information into electronic impedance information, and the cell impedance biosensors are further constructed to detect cell biological behavior, and the future development of cell electronics to lick brick tiles. For this reason, we have done the following four aspects The research work: (1) a simple cell impedance spectrum electronic detection system based on Dry film photoresist-indium tin oxide (DFP-ITO) was designed to detect cell biobehavioral information detection. We found that different diameters of DFP-ITO electrodes have similar impedance characteristics and fully solidified photosensitivity. The dry membrane surface is suitable for A549 cell adhesion and no obvious cytotoxicity; the cell impedance sensor based on the DFP-ITO electrode coupling interface can be able to analyze the adhesion of A549 cells by impedance spectroscopy, cell membrane capacitance, cell space resistance, and cell -ITO electrode gap resistance change in the proliferation process. (2) indium tin oxide ( ITO) the microelectrode surface is prepared by electrodeposition of Electrodeposited polypyrrole (PPy) membrane by electrochemical cyclic voltammetry. In addition, the cell biobehavioral information detection is realized by the coupling interface of the cell impedance spectrum electronic detection system. The results show that the PPy-ITO microelectrode prepared by the optimal parameter (5 cycles of electrodeposition) is compared with the bare ITO microelectrode. The cell impedance biosensor based on the PPy-ITO microelectrode coupling interface can analyze the cell membrane capacitance, cell space resistance, cell polypyrrole gap resistance change detection in the process of A549 cell adhesion and proliferation and EMT, and (3) construct a base The cell impedance biosensor of Graphene oxide/polypyrrole-Indium Tin Oxide (GO/PPy-ITO) microelectrode was used to detect cell adhesion and proliferation behavior. The results showed that the surface of GO/PPy nanocomposites electrodeposited on the surface of ITO microelectrodes was smooth and a large number of microporous structures were distributed; electrochemistry The experimental results show that the GO/PPy-ITO microelectrode has lower impedance characteristics and higher electrochemical activity than the bare ITO microelectrode; GO/PPy can promote A549 cell adhesion, spread and proliferation more than pure PPy membrane, and the adhesion and proliferation behavior of A549 cells on the GO/PPy-ITO microelectrode surface changes the impedance spectrum characteristics of the electrode system, and the impedance spectrum data are carried out. Cell adhesion and proliferation behavior information. (4) a cell impedance biosensor based on polypyrrole /RGD- indium tin oxide (PPy/RGD-ITO) microelectrode was constructed for cell proliferation and cytotoxicity detection. The results showed that the PPy/RGD membrane could promote the spreading, adhesion and increase of A549 cells compared to the ITO and PPy/PSS membranes. On the one hand, the cell impedance biosensor based on PPy/RGD-ITO microelectrode can analyze the cell membrane capacitance, cell space resistance, cell polypyrrole membrane gap resistance change during cell proliferation and the relationship between the concentration of I and cytotoxicity.
【學位授予單位】:重慶醫(yī)科大學
【學位級別】:博士
【學位授予年份】:2016
【分類號】:Q2-33
【相似文獻】
相關期刊論文 前10條
1 王杰;徐友龍;陳曦;杜顯鋒;李喜飛;;電化學法制備高密度導電聚吡咯的性能研究[J];物理學報;2007年07期
2 容華;;導電聚吡咯[J];世界研究與開發(fā)報導;1989年04期
3 吳林友;劉尚長;王鐵杰;于保強;高揚;;新型的過渡金屬聚吡咯配合物的合成與催化作用性能的研究 Ⅲ——二氯η-二聚吡咯合鉑配合物[J];遼寧大學學報(自然科學版);1990年02期
4 陳國華,,顏文禮;化學法合成導電聚吡咯的研究現(xiàn)狀[J];華僑大學學報(自然科學版);1994年02期
5 韓高義;趙華;靳明;;聚丙烯纖維膜為基底的聚吡咯合成及其電容性能研究[J];山西大學學報(自然科學版);2012年02期
6 侯大年;王琴;梁志宏;張文楠;原思國;;聚吡咯復合纖維的合成及吸附病毒性能研究[J];河南科學;2013年09期
7 錢人元;李永舫;;導電聚吡咯[J];科學;1998年03期
8 姜中興,葉景泉,石闖;聚吡咯有機/無機插層材料的研究[J];武漢大學學報(理學版);2004年04期
9 錢人元,李永舫;導電聚吡咯的研究[J];中國科學基金;1996年03期
10 安顥瑗;任麗;王立新;;磺酸系摻雜劑對聚吡咯結構與導電性能的影響[J];云南大學學報(自然科學版);2005年S3期
相關會議論文 前10條
1 葛曉艷;宋根萍;郭榮;;自身模板法合成聚吡咯空心球[A];中國化學會第27屆學術年會第13分會場摘要集[C];2010年
2 宋根萍;郭榮;;微乳液中聚吡咯復合納米粒子的制備[A];中國化學會第十屆膠體與界面化學會議論文摘要集[C];2004年
3 安顥瑗;王立新;任麗;;聚吡咯的化學氧化合成與導電性能研究[A];2005年全國高分子學術論文報告會論文摘要集[C];2005年
4 陳鵬磊;高鵬;劉鳴華;;交叉排列納米帶陣列的構筑及其在聚吡咯納米圖案構筑上的應用[A];中國化學會第二十五屆學術年會論文摘要集(上冊)[C];2006年
5 肖紅梅;朱路平;付紹云;;三維規(guī)整排列聚吡咯空心球的制備及其電性能研究[A];2007年全國高分子學術論文報告會論文摘要集(上冊)[C];2007年
6 閆長領;劉t
本文編號:1856178
本文鏈接:http://sikaile.net/shoufeilunwen/jckxbs/1856178.html