天堂国产午夜亚洲专区-少妇人妻综合久久蜜臀-国产成人户外露出视频在线-国产91传媒一区二区三区

磁層三維電場(chǎng)儀及超低頻波粒相互作用分析器設(shè)計(jì)

發(fā)布時(shí)間:2018-05-06 19:13

  本文選題:磁層 + 空間電場(chǎng) ; 參考:《中國(guó)科學(xué)院國(guó)家空間科學(xué)中心》2017年博士論文


【摘要】:空間電磁環(huán)境是重要的空間環(huán)境背景參量,同時(shí)電磁場(chǎng)的擾動(dòng)也與各種空間天氣事件緊密聯(lián)系。發(fā)展空間電場(chǎng)探測(cè)手段,探測(cè)空間電場(chǎng)及電磁波的變化特征,準(zhǔn)確測(cè)量空間電場(chǎng),是等離子體動(dòng)力學(xué)研究、氣象研究以及地震預(yù)報(bào)的迫切需要。本研究的主要目的就是要研究磁層三維電場(chǎng)儀的核心技術(shù),為我國(guó)今后衛(wèi)星星載電場(chǎng)儀的研制提供堅(jiān)實(shí)的基礎(chǔ),并在此基礎(chǔ)上提出超低頻波粒相互作用分析器的設(shè)計(jì)。本文主要工作有:1、針對(duì)具體的合聲波、EMIC波、ULF波和更低頻率波的交流電場(chǎng)以及DC電場(chǎng)的測(cè)量需求,設(shè)計(jì)并制作了了電場(chǎng)儀信號(hào)處理系統(tǒng),包括前置放大電路,信號(hào)濾波電路,電場(chǎng)信號(hào)差分電路,對(duì)每一部分電路設(shè)計(jì)做了模擬仿真,制作了相應(yīng)的電路板,進(jìn)行了電路板調(diào)試,給出了具體的測(cè)試結(jié)果。2、制作了電場(chǎng)儀伸桿電子系統(tǒng),包括為了減小耦合電阻而給探頭施加偏置電流(BIAS)的電路,以及為了減小光電流干擾的Usher和Guard電壓偏置電路,并結(jié)合FPGA的控制,進(jìn)行了傳感器測(cè)試診斷(Sensor Diagnostic Test,SDT)功能的演示,確定電場(chǎng)儀探頭最佳工作點(diǎn)。3、制作了電場(chǎng)儀的電源系統(tǒng),包括數(shù)字電源、模擬電源的設(shè)計(jì)和工程實(shí)現(xiàn),做了仿真測(cè)試和PCB板上調(diào)試,測(cè)量了各個(gè)電源的紋波,結(jié)果顯示各電源能夠滿足設(shè)計(jì)需求,當(dāng)然,要獲得更加穩(wěn)定的電源還需要進(jìn)一步的優(yōu)化設(shè)計(jì)。4、定量計(jì)算了球形電場(chǎng)儀探頭分別在電離層、磁層兩種等離子體環(huán)境中的耦合電壓及耦合電阻大小;定量計(jì)算了給球形探頭施加偏置電流在提高電場(chǎng)測(cè)量精度、減小測(cè)量誤差方面的意義;定量計(jì)算了密度梯度和溫度梯度對(duì)電場(chǎng)測(cè)量結(jié)果的影響;定量計(jì)算了運(yùn)算放大器的輸入阻抗以及電場(chǎng)儀探頭與周圍等離子體的耦合阻抗對(duì)測(cè)量結(jié)果的影響。計(jì)算結(jié)果表明,給球形電場(chǎng)儀探頭施加一定的偏置電流,可以減小探頭與等離子體之間的耦合電阻,減小由于密度梯度以及溫度梯度等因素引起的測(cè)量誤差,提高測(cè)量的準(zhǔn)確性;選擇輸入阻抗較大的前置放大器,或者選擇直徑較大的探頭,增加探頭與等離子體之間的耦合電容,都能有效的提高電場(chǎng)測(cè)量精度;而通過(guò)增加探頭伸桿的長(zhǎng)度,可以減小由于等離子體德拜半徑過(guò)大和尾跡效應(yīng)引起的測(cè)量誤差。5、設(shè)計(jì)了超低頻波粒相互作用分析器原理模塊,對(duì)儀器的每個(gè)功能模塊進(jìn)行了建模及測(cè)試,根據(jù)測(cè)試結(jié)果,進(jìn)行了相關(guān)的誤差分析。本文的創(chuàng)新點(diǎn)有:1、針對(duì)研究合聲波、emic波、ulf波和更低頻率波的交流電場(chǎng)以及dc電場(chǎng)與粒子相互作用過(guò)程的需求,設(shè)計(jì)了能準(zhǔn)確測(cè)量三維電場(chǎng)超低頻及準(zhǔn)直流部分的雙旋轉(zhuǎn)平面電場(chǎng)測(cè)量方案,制作了相應(yīng)的原理模塊設(shè)計(jì)。該測(cè)量方案克服了目前空間電場(chǎng)儀無(wú)法準(zhǔn)確測(cè)量超低頻和準(zhǔn)直流電場(chǎng)的缺點(diǎn),能真正意義上實(shí)現(xiàn)對(duì)超低頻和準(zhǔn)直流三維電場(chǎng)的準(zhǔn)確測(cè)量。2、在準(zhǔn)確測(cè)量超低頻和準(zhǔn)直流三維電場(chǎng)的前提下,原創(chuàng)性地提出了超低頻波粒相互作用分析器的設(shè)計(jì),這種分析器能測(cè)量emic波、ulf波和更低頻率波的交流電場(chǎng)以及dc電場(chǎng)與粒子的微觀相互作用過(guò)程,能準(zhǔn)確給出該過(guò)程中單位時(shí)間內(nèi)的能量傳輸率。3、文中關(guān)于球形電場(chǎng)儀探頭與等離子體之間耦合阻抗的大小以及偏置電流的施加在提高測(cè)量精度方面的定量分析方法和具體步驟,為今后的工程設(shè)計(jì)和數(shù)據(jù)標(biāo)定分析奠定了理論基礎(chǔ)。最后在總結(jié)和展望部分,指出本文中的設(shè)計(jì)在將來(lái)科學(xué)觀測(cè)任務(wù)中的實(shí)際指導(dǎo)意義及應(yīng)用方向,并且給出了后續(xù)的一些研究計(jì)劃,包括進(jìn)一步將整個(gè)系統(tǒng)工程化,以及對(duì)超低頻波粒相互作用分析器的改進(jìn)方向。
[Abstract]:Space electromagnetic environment is an important background parameter of space environment, and the disturbance of electromagnetic field is closely related to various space weather events. It is urgent to develop space electric field detection means, detect the change characteristics of space electric field and electromagnetic wave, and accurately measure the space electric field. It is an urgent need for plasma dynamic study, meteorology research and earthquake prediction. The main purpose of this study is to study the core technology of the magnetosphere three dimensional electric field instrument and provide a solid foundation for the development of the future satellite borne electric field instrument in our country. On the basis of this, the design of the ultra low frequency wave particle interaction analyzer is proposed. The main work is as follows: 1, for specific acoustic wave, EMIC wave, ULF wave and lower frequency wave rate wave. The signal processing system of the electric field instrument is designed and made, including the preamplifier circuit, the signal filter circuit and the electric field signal differential circuit. The circuit board is simulated, the corresponding circuit board is made, the circuit board is debugged and the specific test results.2 are given, and the concrete test results are given, and the concrete test results are given. An electronic system of the electric field instrument extension rod is made, including the circuit for applying the bias current (BIAS) to the probe to reduce the coupling resistance, and the Usher and Guard voltage bias circuit for reducing the interference of the light current, and with the control of the FPGA, a demonstration of the function of the sensor test diagnosis (Sensor Diagnostic Test, SDT) is carried out, and the probe of the electric field instrument is determined most. .3, making the power system of the electric field instrument, including the digital power supply, the design of analog power supply and the implementation of the engineering, the simulation test and the debugging on the PCB board, measured the ripple of each power supply. The results show that the power supply can meet the design requirements. Of course, to get more stable power supply, further optimization design.4, quantitative The coupling voltage and coupling resistance in the two plasma environments of the ionosphere and magnetosphere are calculated by the spherical electric field probe, and the significance of applying the bias current to the spherical probe is calculated to improve the measurement accuracy of the electric field and reduce the measurement error, and the quantitative calculation of the density gradient and the temperature gradient on the measurement results of the electric field is given. The influence of the input impedance of the operational amplifier and the coupling impedance of the electric field probe and the surrounding plasma on the measurement results is calculated quantitatively. The results show that the coupling resistance between the probe and the plasma can be reduced and the density gradient and the temperature gradient can be reduced by applying the bias current to the probe of the spherical electric field instrument. The measurement error caused by the other factors can improve the accuracy of the measurement, and the precision of the electric field measurement can be effectively improved by selecting a larger preamplifier with a larger input impedance, or selecting a larger diameter probe and increasing the coupling capacitance between the plasma and the probe, and the length of the probe extension can reduce the Diba half of the plasma. The measurement error caused by large diameter and wake effect is.5. The principle module of ultra low frequency wave particle interaction analyzer is designed. Each functional module of the instrument is modeled and tested. The related error analysis is carried out according to the test results. The innovation points of this paper are as follows: 1, the communication of acoustic wave, emic wave, Ulf wave and low frequency wave rate are studied in this paper. The demand of the electric field and the interaction between the DC electric field and the particle is designed. A two rotating plane electric field measurement scheme which can accurately measure the ultra low frequency and quasi direct current part of the electric field is designed. The corresponding principle module is designed. The measurement scheme overcomes the shortcomings that the space electric field meter can not accurately measure the ultra low frequency and the quasi direct current electric field at present. In real sense, the accurate measurement of ultra low frequency and quasi direct current three-dimensional electric field.2, on the premise of accurate measurement of ultra low frequency and quasi direct current three-dimensional electric field, the design of ultra low frequency wave particle interaction analyzer is designed. This analyzer can measure the AC electric field of emic wave, Ulf wave and lower frequency wave, and DC electric field and particle. The microcosmic interaction process can accurately give the energy transfer rate per unit time in the process.3, the size of the coupling impedance between the probe and the plasma of the spherical electric field instrument and the quantitative analysis method and the concrete steps of the bias current applied to improve the measurement accuracy. The theoretical basis is laid out. Finally, in the summary and prospect part, the practical guiding significance and application direction of the design in the future scientific observation task are pointed out, and some subsequent research plans are given, including the further engineering of the whole system and the improvement direction of the ultra low frequency wave particle interaction analyzer.

【學(xué)位授予單位】:中國(guó)科學(xué)院國(guó)家空間科學(xué)中心
【學(xué)位級(jí)別】:博士
【學(xué)位授予年份】:2017
【分類號(hào)】:P353

【相似文獻(xiàn)】

相關(guān)期刊論文 前10條

1 呂宏忠,張先恭,丁一匯;赤道地區(qū)向西傳播的40天周期低頻波[J];氣象學(xué)報(bào);1991年01期

2 柯史釗,王志明;海平面月平均氣壓場(chǎng)低頻波的時(shí)空譜分析[J];熱帶氣象;1985年03期

3 李曉紅;董禮先;;冬季寒潮期間黃、渤海水位低頻波動(dòng)研究[J];海洋與湖沼;2011年04期

4 貝君平;牛猛;徐濤;李媛媛;;人工低頻波在渤南五區(qū)應(yīng)用的可行性研究[J];內(nèi)江科技;2012年03期

5 孫國(guó)武;孔春燕;信飛;陳伯民;何金海;;天氣關(guān)鍵區(qū)大氣低頻波延伸期預(yù)報(bào)方法[J];高原氣象;2011年03期

6 孫國(guó)武,陳葆德;青藏高原上空大氣低頻波的振蕩及其經(jīng)向傳播[J];大氣科學(xué);1988年03期

7 溫之平,梁必騏;OLR資料所揭示的熱帶地區(qū)低頻振蕩的變化特征[J];熱帶氣象;1992年02期

8 克里希納默蒂;塞勃拉麥奈姆;陳乾;;夏季風(fēng)試驗(yàn)期間850毫巴上30—50天的模態(tài)[J];甘肅氣象;1983年04期

9 李洪義;殷學(xué)成;;波流相互作用中潛堤上低頻波浪數(shù)值模擬[J];中國(guó)水運(yùn)(下半月);2014年06期

10 徐建軍,何金海;夏季低頻波動(dòng)E矢量分布特征及其與時(shí)間平均流的關(guān)系[J];氣象學(xué)報(bào);1993年01期

相關(guān)會(huì)議論文 前6條

1 劉萬(wàn)琴;鄭治真;;近場(chǎng)記錄中的低頻波研究[A];1997年中國(guó)地球物理學(xué)會(huì)第十三屆學(xué)術(shù)年會(huì)論文集[C];1997年

2 孫國(guó)武;孔春燕;信飛;陳伯民;何金海;;天氣關(guān)鍵區(qū)大氣低頻波的延伸期預(yù)報(bào)方法[A];第27屆中國(guó)氣象學(xué)會(huì)年會(huì)副熱帶季風(fēng)與氣候變化分會(huì)場(chǎng)論文集[C];2010年

3 唐林波;李世愚;和雪松;劉建新;蘇f ;;強(qiáng)地震前低頻波的實(shí)驗(yàn)研究[A];中國(guó)地球物理學(xué)會(huì)年刊2002——中國(guó)地球物理學(xué)會(huì)第十八屆年會(huì)論文集[C];2002年

4 劉文龍;曹晉濱;Xinlin Li;T.E.Sarris;宗秋剛;;等離子體層頂附近的超低頻波性質(zhì)[A];中國(guó)空間科學(xué)學(xué)會(huì)空間物理學(xué)專業(yè)委員會(huì)第十五屆全國(guó)日地空間物理學(xué)研討會(huì)摘要集[C];2013年

5 孔春燕;孫國(guó)武;信飛;陳伯民;何金海;;大氣低頻波與我國(guó)東部汛期雨帶的研究[A];第27屆中國(guó)氣象學(xué)會(huì)年會(huì)副熱帶季風(fēng)與氣候變化分會(huì)場(chǎng)論文集[C];2010年

6 張淑亮;;山西地區(qū)前兆測(cè)項(xiàng)在汶川地震前低頻波動(dòng)異常[A];中國(guó)地震學(xué)會(huì)地震流體專業(yè)委員會(huì)2009年年會(huì)暨學(xué)術(shù)討論會(huì)大會(huì)摘要集[C];2009年

相關(guān)博士學(xué)位論文 前1條

1 李仁康;磁層三維電場(chǎng)儀及超低頻波粒相互作用分析器設(shè)計(jì)[D];中國(guó)科學(xué)院國(guó)家空間科學(xué)中心;2017年

相關(guān)碩士學(xué)位論文 前1條

1 盧衛(wèi);海岸低頻波浪數(shù)值模擬[D];大連理工大學(xué);2004年



本文編號(hào):1853533

資料下載
論文發(fā)表

本文鏈接:http://sikaile.net/shoufeilunwen/jckxbs/1853533.html


Copyright(c)文論論文網(wǎng)All Rights Reserved | 網(wǎng)站地圖 |

版權(quán)申明:資料由用戶10ebf***提供,本站僅收錄摘要或目錄,作者需要?jiǎng)h除請(qǐng)E-mail郵箱bigeng88@qq.com