長(zhǎng)春市城區(qū)淺層地?zé)崮茉u(píng)價(jià)及地下水源熱泵采灌模式研究
本文選題:淺層地溫能 + 適宜性評(píng)價(jià); 參考:《吉林大學(xué)》2016年博士論文
【摘要】:在國(guó)際環(huán)境提倡可再生能源替代傳統(tǒng)能源結(jié)構(gòu)背景下,地?zé)豳Y源作為太陽(yáng)能資源重要組成部分,能為我國(guó)經(jīng)濟(jì)騰飛做出巨大貢獻(xiàn),近些年已有一些科學(xué)研究者對(duì)淺層地?zé)崮荛_(kāi)發(fā)進(jìn)行了研究,加快了地?zé)豳Y源開(kāi)發(fā)利用的進(jìn)程,并成為地下水科學(xué)與工程學(xué)科發(fā)展新方向。本文通過(guò)對(duì)長(zhǎng)春城區(qū)淺層地溫能資源調(diào)查研究,揭示了研究區(qū)巖土熱儲(chǔ)條件及淺層地溫場(chǎng)分布規(guī)律,并對(duì)淺層地溫能資源的開(kāi)發(fā)利用進(jìn)行適宜性區(qū)劃,在此基礎(chǔ)上采用數(shù)值模擬技術(shù),對(duì)研究區(qū)地?zé)崮苜Y源采灌模式進(jìn)行模擬,計(jì)算出長(zhǎng)春城區(qū)淺層地溫能資源總量,為長(zhǎng)春市淺層地溫能開(kāi)發(fā)利用提供重要數(shù)據(jù)支撐和科學(xué)可行方案。得出以下幾點(diǎn)認(rèn)識(shí):(1)論文對(duì)長(zhǎng)春城區(qū)淺層地溫能賦存的巖土特征進(jìn)行了分析。區(qū)內(nèi)伊通河谷賦存的孔隙水和臺(tái)地區(qū)基巖裂隙水的富水性、水溫、水質(zhì)等因素制約著淺層地溫能利用。其中,伊通河谷地區(qū)地下水剩余資源量較多,且回灌條件好,可以在水質(zhì)滿(mǎn)足要求的基礎(chǔ)上進(jìn)行水源熱泵的開(kāi)發(fā)利用。臺(tái)地區(qū)賈家洼子和四間房基巖富水帶的地下水水質(zhì)較好,但剩余水資源量較少;興隆溝富水地段,剩余水資源量較多,應(yīng)適當(dāng)增加該區(qū)地下水資源開(kāi)采比例,將地下水更多應(yīng)用于供熱,使能源利用最大化。(2)論文對(duì)不同的巖性的地貌單元進(jìn)行了實(shí)際熱物性參數(shù)測(cè)試,取得了背景數(shù)據(jù),總結(jié)出區(qū)內(nèi)三種不同類(lèi)型地層結(jié)構(gòu)的熱物性參數(shù)。在此基礎(chǔ)上,對(duì)研究區(qū)溫度場(chǎng)進(jìn)行了研究,分析不同位置鉆孔、不同深度的巖層溫度變化情況,結(jié)果顯示,長(zhǎng)春城區(qū)平均地溫梯度為2.88℃/100m,從全區(qū)淺層地溫能分布規(guī)律來(lái)看,城區(qū)外圍地溫低,城區(qū)內(nèi)地溫相對(duì)較高,該結(jié)論為長(zhǎng)春城區(qū)淺層地溫能利用范圍的選取提供了明確而可靠的方向。(3)論文采用層次分析方法結(jié)合GIS對(duì)長(zhǎng)春城區(qū)水源熱泵和地埋管地源熱泵的適宜區(qū)進(jìn)行了評(píng)價(jià),將研究區(qū)分為水源熱泵的適宜區(qū)、較適宜區(qū)、一般適宜區(qū)和不適宜區(qū)。分別為:Ⅰ區(qū)(賈家洼子-八里堡-興隆溝基巖裂隙含水帶以西地區(qū))為地下水源熱泵不適宜區(qū),Ⅱ區(qū)八里堡富水帶為地下水源熱泵適宜區(qū),Ⅱ區(qū)賈家洼子-興隆溝段和Ⅲ區(qū)伊通河谷地區(qū)大部分地區(qū)是建立水源熱泵開(kāi)發(fā)系統(tǒng)的較適宜區(qū)和一般適宜區(qū)。(4)論文在水源熱泵的適宜區(qū)建立了淺層地溫能開(kāi)發(fā)利用的水-熱耦合模擬模型,采用TOUGH2軟件進(jìn)行求解,利用研究區(qū)內(nèi)的水溫和壓力觀測(cè)資料對(duì)所建模型進(jìn)行識(shí)別和驗(yàn)證,以2011年為現(xiàn)狀年,對(duì)研究區(qū)未來(lái)10年的溫度場(chǎng)和壓力場(chǎng)進(jìn)行預(yù)測(cè);并探討了研究區(qū)內(nèi)地下水源熱泵系統(tǒng)抽水井和回灌井在不同采灌模式下的溫度場(chǎng)和壓力場(chǎng)變化及發(fā)生熱突破時(shí)間等問(wèn)題。結(jié)論如下:(1)在單抽單灌模式下,即抽水井沿著水力坡度方向指向回灌井的情況下,設(shè)計(jì)抽水量為Ⅱ區(qū)、Ⅲ區(qū)為500 m3/d、800 m3/d、1500 m3/d,分別在30m、50m、80m、100 m和150 m的抽灌井間距下,對(duì)熱突破時(shí)間、抽灌量與合理井間距的關(guān)系進(jìn)行模擬計(jì)算。結(jié)果顯示:Ⅲ區(qū)發(fā)生熱突破的時(shí)間要長(zhǎng)于Ⅱ區(qū);系統(tǒng)運(yùn)行10年后,Ⅱ區(qū)溫度場(chǎng)整體下降0.7℃,Ⅲ區(qū)溫度場(chǎng)整體下降0.6℃;到2022年,熱儲(chǔ)壓力降幅為6.1×104Pa。(2)在單抽雙灌模式下,分別模擬5種布井方案。在綜合考慮熱突破和溫度場(chǎng)影響下,可以得出如下結(jié)論:直線(xiàn)型布井方案a(兩口回灌井位于抽水井同側(cè),且抽水井位于上游)和折線(xiàn)型布井方案d(兩口回灌井與抽水井垂直排列,且抽水井位于上游)為最佳布井方案。抽水量500 m3/d、800 m3/d和1500 m3/d時(shí),合理布井間距為Ⅱ區(qū)75m、90m和150m,Ⅲ區(qū)70 m、90m和150m。相應(yīng)的布井方案下,水源熱泵系統(tǒng)運(yùn)行10年對(duì)溫度場(chǎng)的影響范圍為400m×200m,溫度場(chǎng)整體降幅0.5℃。到2022年,熱儲(chǔ)壓力降幅為5.1×104Pa,年水位變幅0.52m。(5)論文采用熱均衡理論計(jì)算研究區(qū)淺層地溫能容量。結(jié)果顯示:Ⅱ區(qū)熱容量為3.9×1013kJ,Ⅲ區(qū)熱容量為8.1×1013kJ,合計(jì)熱容量為1.2×1014kJ。從計(jì)算結(jié)果看出,在Ⅱ區(qū)和Ⅲ區(qū)地下水賦存區(qū)域,地下水是重要的熱儲(chǔ)介質(zhì),熱容量相對(duì)較高。在地下水源熱泵、土壤源熱泵系統(tǒng)換熱功率計(jì)算中,將最佳井間距引入地下水量折算法中,用來(lái)計(jì)算區(qū)域換熱功率,結(jié)論為:長(zhǎng)春市伊通河谷松散砂礫石與青山口基巖風(fēng)化帶含水層地下水地源熱泵系統(tǒng)總換熱功率為33.4×104 kW(冬季)、66.8×104 kW(夏季),可為668×104m2建筑物供暖,為835×104m2建筑物制冷。
[Abstract]:Under the background of promoting renewable energy instead of traditional energy structure in the international environment, geothermal resources, as an important component of solar energy resources, can make great contributions to China's economic take-off. In recent years, some scientific researchers have studied the development of shallow geothermal energy, accelerated the development and utilization of geothermal resources, and became underground. The new direction of water science and engineering development. Through the investigation of the shallow geothermal energy resources in Changchun City, this paper reveals the geothermal storage conditions and the distribution of shallow geothermal field in the study area, and makes a suitable zoning for the exploitation and utilization of shallow geothermal energy resources. On this basis, the geothermal energy resources in the study area are applied to the geothermal energy resources in the study area. The total amount of shallow geothermal energy resources in Changchun urban area is calculated, which provides important data support and scientific feasible scheme for the development and utilization of shallow geothermal energy in Changchun city. The following points are obtained: (1) the paper analyses the geotechnical characteristics of shallow geothermal energy stored in Changchun urban area. The water rich, water temperature and water quality of the bedrock fractured water in the platform area restrict the utilization of shallow geothermal energy. Among them, the amount of the residual resources of groundwater in the Yitong valley area is more, and the recharge conditions are good. The water source heat pump can be developed and utilized on the basis of the water quality requirements. The groundwater of the Jia Jia depression and the four bedrock rich water zones in the platform area The water quality is better, but the amount of residual water resources is less; the amount of surplus water is more abundant in the rich water area of the Xing Long Gully. It is necessary to appropriately increase the ratio of groundwater resources exploitation in this area, apply the groundwater more in heating and maximize the utilization of energy. (2) the actual thermal physical parameters of different lithologic geomorphic units are tested and background data have been obtained. The thermo physical parameters of three different types of stratigraphic structures in the area are summed up. On this basis, the temperature field of the study area is studied. The temperature changes of different boreholes and different depths are analyzed. The results show that the average geothermal gradient in Changchun urban area is 2.88 /100m. The temperature of the urban area is relatively high. This conclusion provides a clear and reliable direction for the selection of the shallow geothermal energy utilization in Changchun urban area. (3) the paper uses analytic hierarchy process to evaluate the suitable area of water source heat pump and ground source heat pump in Changchun City, which will be distinguished as the suitable area of water source heat pump. The suitable area, the general suitable area and the unsuitable area are: area I (Jia Jia Wa Zi - eight liipu - Xing Long Gou base rock fissure water zone in the west area) is an unsuitable area for underground water source heat pump, and the eight Libao water rich zone in the second area is the suitable area for underground water source heat pump, and the water source is established in the most areas of the Jia Jia Wa Zi Xing Long Gou section and the third area Yitong Valley region in the second region. The suitable area and general suitable area for the heat pump development system. (4) the water heat coupling simulation model of shallow layer geothermal energy is established in the suitable area of the water source heat pump. The model is solved by TOUGH2 software. The model is identified and verified by the observation data of water temperature and pressure in the study area. In the year of 2011, the model is used for research and research. The temperature field and pressure field in the next 10 years are predicted, and the temperature field and pressure field change of the pumping well and the recharge well in the groundwater source heat pump system in the study area are discussed. The conclusions are as follows: (1) the pumping well is directed back in the direction of hydraulic gradient under single pumping and single injection mold. Under the condition of well irrigation, the design pumping amount is 2 area, the third area is 500 m3/d, 800 m3/d, 1500 m3/d. Under the spacing of 30m, 50m, 80m, 100 m and 150 m, the relationship between the heat breakthrough time and the rational well spacing is simulated. The results show that the time of heat breakthrough in the third zone is longer than that in the second zone; after the system operation, after 10 years, II zone The temperature field decreased by 0.7 degrees C, and the temperature field in the third area decreased by 0.6 degrees C. To 2022, the thermal storage pressure was reduced to 6.1 x 104Pa. (2) under single pumping and double irrigation mode, and 5 kinds of well distribution schemes were simulated respectively. Under the influence of heat breakthrough and temperature field, the following conclusion can be drawn: the linear well layout scheme a (two recharge wells are located on the same side of the pumping well, and pumping. " In the upper reaches of the water well and the folded line type well scheme D (two recharge wells and pumping wells vertically arranged, and the drainage well located at the upper reaches) is the best well distribution scheme. When the pumping amount is 500 m3/d, 800 m3/d and 1500 m3/d, the reasonable spacing of the well distribution is 75m, 90m and 150m, 70 m, 90m and 150m., the water source heat pump system operates for 10 years. The influence range of the degree field is 400m x 200m, the temperature field is reduced by 0.5 degrees Celsius. By 2022, the thermal storage pressure drop is 5.1 x 104Pa, the annual water level amplitude 0.52m. (5) is used to calculate the shallow geothermal capacity of the study area by the thermal equilibrium theory. The results show that the thermal capacity of the second region is 3.9 x 1013kJ, the thermal capacity of the third region is 8.1 x 1013kJ, the total heat capacity is 1.2 x 1014kJ.. From the calculation results, the groundwater is an important thermal storage medium and the thermal capacity is relatively high in the groundwater storage area in the second and third areas. In the underground water source heat pump and the calculation of the heat exchange power of the soil source heat pump system, the best well spacing is introduced into the subsurface water conversion method to calculate the regional heat transfer power. The conclusion is that the Changchun Yitong Valley pine is pine. The total heat transfer power of the ground water source heat pump system of the sandy gravel and the weathered zone of the Qingshankou bedrock is 33.4 x 104 kW (winter) and 66.8 * 104 kW (summer), which can be used for heating 668 x 104m2 buildings and refrigerating for 835 104m2 buildings.
【學(xué)位授予單位】:吉林大學(xué)
【學(xué)位級(jí)別】:博士
【學(xué)位授予年份】:2016
【分類(lèi)號(hào)】:P314
【參考文獻(xiàn)】
相關(guān)期刊論文 前10條
1 張占輝;王恩宇;耿磊;陳宇樸;齊承英;;地源熱泵系統(tǒng)運(yùn)行參數(shù)及土壤溫度變化特性分析[J];河北工業(yè)大學(xué)學(xué)報(bào);2016年04期
2 陳焱;未騰超;徐露雨;豆遠(yuǎn)勝;;包頭地區(qū)淺層地?zé)崮荛_(kāi)發(fā)利用現(xiàn)狀及對(duì)策[J];能源研究與利用;2016年03期
3 陳紅軍;;地源熱泵技術(shù)的特點(diǎn)及發(fā)展前景分析[J];低碳世界;2015年32期
4 楊德金;;基于GIS技術(shù)的新鄉(xiāng)市規(guī)劃區(qū)地?zé)豳Y源評(píng)價(jià)[J];地下水;2015年05期
5 周總瑛;劉世良;劉金俠;;中國(guó)地?zé)豳Y源特點(diǎn)與發(fā)展對(duì)策[J];自然資源學(xué)報(bào);2015年07期
6 胡松濤;孫云川;胡思敬;;利用層次分析法評(píng)價(jià)東營(yíng)市淺層地?zé)崮苓m宜性[J];山東國(guó)土資源;2014年07期
7 張彥平;張全升;;長(zhǎng)春伊通河砂土地基承載力研究[J];建筑設(shè)計(jì)管理;2014年04期
8 高山;;吉林市城區(qū)地下水源熱泵淺層地?zé)崮荛_(kāi)發(fā)利用前景分析[J];吉林地質(zhì);2014年01期
9 馮冠華;范偉生;孫燕冬;;深層地?zé)崽菁?jí)利用在獻(xiàn)縣建筑節(jié)能領(lǐng)域的應(yīng)用分析[J];建設(shè)科技;2014年02期
10 王小清;王萬(wàn)忠;;地埋管地源熱泵系統(tǒng)運(yùn)行期地溫監(jiān)測(cè)與分析[J];上海國(guó)土資源;2013年02期
,本文編號(hào):1838385
本文鏈接:http://sikaile.net/shoufeilunwen/jckxbs/1838385.html