天堂国产午夜亚洲专区-少妇人妻综合久久蜜臀-国产成人户外露出视频在线-国产91传媒一区二区三区

對(duì)非均勻環(huán)境下帶自由邊界條件的反應(yīng)擴(kuò)散方程的定性研究

發(fā)布時(shí)間:2018-05-02 10:51

  本文選題:反應(yīng)擴(kuò)散模型 + 自由邊界 ; 參考:《中國(guó)科學(xué)技術(shù)大學(xué)》2017年博士論文


【摘要】:隨著全球化進(jìn)程的不斷加快,特別是對(duì)外貿(mào)易以及出國(guó)旅游的快速增長(zhǎng),外來(lái)物種入境變得更加頻繁,這樣往往會(huì)形成生物入侵.生物入侵不但對(duì)當(dāng)?shù)厣锒鄻有詷?gòu)成了巨大威脅,破壞了生態(tài)平衡,造成了難以估量的經(jīng)濟(jì)損失,還直接威脅到人類的健康.同時(shí),由于全球氣候的變化引起的動(dòng)植物分布范圍發(fā)生改變,可能也會(huì)影響到生物入侵的進(jìn)程.為了能夠很好地理解由環(huán)境遷移導(dǎo)致的自然資源分布不均對(duì)外來(lái)物種擴(kuò)散的影響,生物數(shù)學(xué)家嘗試應(yīng)用簡(jiǎn)單的反應(yīng)擴(kuò)散模型來(lái)模擬外來(lái)物種在新棲息地的傳播情況.生物數(shù)學(xué)家通過(guò)數(shù)學(xué)模型分析物種在新環(huán)境中的擴(kuò)散速度和傳播形式,這是他們研究生物入侵進(jìn)程的兩大方向.本文我們將考慮用具有自由邊界條件的反應(yīng)擴(kuò)散方程來(lái)分析預(yù)測(cè)單個(gè)物種在非均勻環(huán)境中的入侵過(guò)程.我們將根據(jù)所建立的數(shù)學(xué)模型利用零點(diǎn)數(shù)理論、比較原理等基本方法分析入侵物種在非均勻環(huán)境中的傳播速度和擴(kuò)散形式.此博士論文中我們將緊緊圍繞非均勻環(huán)境討論兩類具有自由邊界條件的反應(yīng)擴(kuò)散問(wèn)題.對(duì)于第一類自由邊界問(wèn)題,在高維徑向?qū)ΨQ情形下,我們將非均勻環(huán)境分為好環(huán)境和壞環(huán)境,進(jìn)而討論環(huán)境的好壞這種外因及物種的擴(kuò)散率這種內(nèi)因?qū)ν鈦?lái)物種入侵過(guò)程的影響,并且分析探討入侵物種長(zhǎng)時(shí)間的漸近行為.為了更好地考察非均勻環(huán)境對(duì)物種漸近傳播行為的影響,我們首先給出所研究自由邊界問(wèn)題解的適定性結(jié)果;其次,我們給出所研究自由邊界問(wèn)題相應(yīng)的閾值定義及其性質(zhì);之后,我們根據(jù)所定義的閾值給出判斷物種成功入侵或者消亡的充分條件.之后,再利用物種的擴(kuò)散率、初始占有區(qū)域面積及初始密度來(lái)考察物種最終的傳播情況并給出"擴(kuò)張-消亡"二擇一定理.最后,我們通過(guò)構(gòu)造合適的上下解并結(jié)合比較原理得到物種入侵前沿的漸近擴(kuò)張速度.對(duì)于第二類自由邊界問(wèn)題,在一維情形下,當(dāng)氣候變化速度小于某臨界速度時(shí),在物種成功入侵的情況下,我們考察外來(lái)物種精細(xì)的長(zhǎng)時(shí)間動(dòng)力學(xué)行為.即對(duì)于氣候變化速度小于某常值速度的情形,當(dāng)物種成功入侵時(shí)我們可以得到物種的最終擴(kuò)散形式及擴(kuò)張前沿的最終傳播形態(tài)和漸近擴(kuò)張速度.因此,我們將緊緊圍繞物種成功入侵的情形,首先通過(guò)構(gòu)造合適的上下解來(lái)說(shuō)明物種的擴(kuò)張前沿與某條直線關(guān)于時(shí)間一致有界,再利用零點(diǎn)數(shù)方法說(shuō)明擴(kuò)張前沿最終將以線性形式向外擴(kuò)張.也就是說(shuō),當(dāng)入侵成功時(shí),物種最終將以某一直線函數(shù)的形式向外傳播并且漸進(jìn)擴(kuò)張速度是一個(gè)固定的常數(shù).進(jìn)一步地,我們利用比較原理構(gòu)造上下解給出入侵物種最終詳細(xì)的傳播形式.
[Abstract]:With the accelerating process of globalization, especially the rapid growth of foreign trade and travel abroad, the entry of alien species becomes more frequent, which often forms biological invasion. Biological invasion not only poses a great threat to local biodiversity, destroys the ecological balance, causes incalculable economic losses, but also directly threatens human health. At the same time, changes in the distribution of animals and plants due to global climate change may also affect the process of biological invasion. In order to understand the influence of the uneven distribution of natural resources caused by environmental migration on the diffusion of alien species, biological mathematicians try to simulate the spread of alien species in new habitats by using a simple reactive diffusion model. Biological mathematicians use mathematical models to analyze the diffusion speed and propagation form of species in the new environment, which are their two main directions in the study of biological invasion process. In this paper, we will consider using the reaction diffusion equation with free boundary conditions to analyze and predict the invasion process of a single species in a non-uniform environment. According to the established mathematical model, we will analyze the propagation velocity and diffusion form of invasive species in non-uniform environment by using zero number theory, comparison principle and other basic methods. In this dissertation, we will discuss two kinds of reaction-diffusion problems with free boundary conditions. For the first kind of free boundary problem, in the case of high dimensional radial symmetry, we divide the non-uniform environment into good environment and bad environment. The influence of the external cause of environment and the diffusion rate of species on the invasive process of alien species is discussed, and the asymptotic behavior of invasive species over a long period of time is analyzed. In order to better investigate the effect of non-uniform environment on the asymptotic propagation behavior of species, we first give the suitable qualitative results of the solution of the free boundary problem studied, secondly, we give the corresponding threshold definition and properties of the free boundary problem studied. Then we give sufficient conditions for the species to succeed in invading or disappearing according to the defined threshold. After that, the diffusion rate of species, the area of initial occupied area and the initial density of species are used to investigate the final propagation of species and to give the "expansion-extinction" alternative theory. Finally, by constructing appropriate upper and lower solutions and combining the principle of comparison, we obtain the asymptotic expansion rate of the species invasion front. For the second kind of free boundary problem, in one dimensional case, when the climate change velocity is less than a certain critical velocity, and in the case of successful species invasion, we investigate the fine long-term dynamic behavior of alien species. In other words, when the climate change speed is less than a constant velocity, we can obtain the final diffusion form of species and the final propagation form and asymptotic expansion velocity of the expansion frontier when species invades successfully. Therefore, we will focus on the successful invasion of species, first of all, by constructing appropriate upper and lower solutions, we will show that the expansion front of the species is consistent with the time bound of a straight line. Then the zero point method is used to show that the extension front will eventually expand outwards in a linear form. That is to say when the invasion is successful the species will eventually propagate outwards in the form of a linear function and the rate of gradual expansion is a fixed constant. Furthermore, we use the comparison principle to construct the upper and lower solutions for the final detailed propagation of invasive species.
【學(xué)位授予單位】:中國(guó)科學(xué)技術(shù)大學(xué)
【學(xué)位級(jí)別】:博士
【學(xué)位授予年份】:2017
【分類號(hào)】:O175

【相似文獻(xiàn)】

相關(guān)期刊論文 前10條

1 莊達(dá)民,徎克彥,福原驍;具有自由邊界的吹吸氣流的數(shù)值解法(英文)[J];空氣動(dòng)力學(xué)學(xué)報(bào);1988年03期

2 寇智勇,許作良;帶自由邊界的半逆問(wèn)題(英文)[J];寧夏大學(xué)學(xué)報(bào)(自然科學(xué)版);2000年01期

3 曹鐵川;;對(duì)雙自由邊界Stefan問(wèn)題的進(jìn)一步討論[J];內(nèi)蒙古工學(xué)院學(xué)報(bào);1987年02期

4 曹曉軍;;一個(gè)自由邊界上解的存在性問(wèn)題[J];吉首大學(xué)學(xué)報(bào)(自然科學(xué)版);2011年05期

5 吳少華;一類自由邊界的正則性[J];武漢水利電力大學(xué)學(xué)報(bào);1999年05期

6 凌智;;具自由邊界的核反應(yīng)方程解的存在唯一性[J];揚(yáng)州大學(xué)學(xué)報(bào)(自然科學(xué)版);2010年04期

7 盧國(guó)富;帶有重力項(xiàng)的一維滲流方程解的自由邊界正則性[J];福建師大福清分校學(xué)報(bào);1990年02期

8 柏萌;崔尚斌;;Protocells自由邊界生長(zhǎng)模型的適定性[J];中山大學(xué)學(xué)報(bào)(自然科學(xué)版);2009年04期

9 劉玉清;一個(gè)自由邊界帶源及動(dòng)力學(xué)條件的Stefan問(wèn)題解的收斂性[J];江蘇石油化工學(xué)院學(xué)報(bào);2002年01期

10 宋麗平;;與永久美式ESOs有關(guān)的一個(gè)自由邊界問(wèn)題[J];工程數(shù)學(xué)學(xué)報(bào);2014年04期

相關(guān)會(huì)議論文 前1條

1 阿卜力孜·阿卜來(lái)提;賀西平;蘭正康;馬煥培;;節(jié)線與板邊平行的矩形彎振平板指向性的計(jì)算[A];2012'中國(guó)西部聲學(xué)學(xué)術(shù)交流會(huì)論文集(Ⅱ)[C];2012年

相關(guān)博士學(xué)位論文 前6條

1 顧旭e,

本文編號(hào):1833570


資料下載
論文發(fā)表

本文鏈接:http://sikaile.net/shoufeilunwen/jckxbs/1833570.html


Copyright(c)文論論文網(wǎng)All Rights Reserved | 網(wǎng)站地圖 |

版權(quán)申明:資料由用戶65a0d***提供,本站僅收錄摘要或目錄,作者需要?jiǎng)h除請(qǐng)E-mail郵箱bigeng88@qq.com