柴西南新生代沉積和構(gòu)造特征及其與祁漫塔格的構(gòu)造耦合
本文選題:柴達(dá)木盆地 + 祁漫塔格 ; 參考:《浙江大學(xué)》2017年博士論文
【摘要】:青藏高原北緣祁漫塔格-柴達(dá)木盆地西南(簡(jiǎn)稱"柴西南")地區(qū),西北部以阿爾金斷裂為界,南部緊鄰東昆侖構(gòu)造帶,處于青藏高原大地構(gòu)造的關(guān)鍵部位,是青藏高原內(nèi)部最大的地形高差所在之地,由此可見其新生代以來構(gòu)造活動(dòng)之強(qiáng)烈、差異隆升之顯著。因此理清柴西南地區(qū)的沉積構(gòu)造演化特征及其與祁漫塔格地區(qū)的耦合關(guān)系對(duì)于探究整個(gè)青藏高原隆升機(jī)制和演化模型具有重要意義。本文基于柴西南地區(qū)的沉積構(gòu)造響應(yīng)以及祁漫塔格地區(qū)低溫?zé)崮甏鷮W(xué)研究來探討柴西南及鄰區(qū)新生代的演化過程,并初步得到以下認(rèn)識(shí):(1)柴西南被一些主要斷裂分成若干個(gè)不同的構(gòu)造單元,這些次級(jí)單元具有不同的沉積構(gòu)造演化歷史。西部的格斯凸起為中生代晚期就已經(jīng)存在的古隆起,分割著兩側(cè)的阿拉爾凹陷與切克里克凹陷;自新生代早期開始,地層不斷向其超覆沉積,并最終與兩側(cè)的凹陷連通。西北側(cè)的阿拉爾凹陷和紅獅斜坡在路樂河組沉積時(shí)地層向阿爾金山前變厚,說明當(dāng)時(shí)的阿爾金山未隆起,柴達(dá)木盆地可能與塔西南相連;自下干柴溝組沉積時(shí)期開始,沉積中心逐漸向東遷移,形成鼻狀隆起,下油砂山組時(shí)期隆起范圍最大并遭受剝蝕;自上油砂山組沉積開始,紅獅地區(qū)又變?yōu)楹?jiǎn)單的向東南傾的斜坡形態(tài)。中部的躍進(jìn)-烏南地區(qū)同樣是繼承晚中生代古地形發(fā)育而來,新生代早期表現(xiàn)為一整體向東傾的斜坡,直到下油砂山組末期由于斷裂強(qiáng)烈活動(dòng)才開始出現(xiàn)分異,形成躍進(jìn)斜坡、切克里克凹陷、扎哈泉凹陷和鳥南斜坡。南部緊鄰祁漫塔格的昆北地區(qū)沉積特征受盆地內(nèi)北西向斷裂控制作用最為明顯,下油砂山組及以上地層在其東部大范圍缺失,可能意味著這一時(shí)期祁漫塔格地區(qū)發(fā)生強(qiáng)烈活動(dòng)。東南端的彎西地區(qū)在新生代早期一直穩(wěn)定接受沉積,直到下油砂山組末期發(fā)生強(qiáng)烈變形,可能與祁漫塔格的活動(dòng)有關(guān);北東側(cè)的英雄嶺背斜構(gòu)造帶新生代以來一直是柴西南的沉積中心所在,在獅子溝組沉積末期(~3Ma)發(fā)生強(qiáng)烈褶皺隆升,成為現(xiàn)今盆地內(nèi)最大、活動(dòng)性最強(qiáng)的背斜帶。(2)通過柴西南地區(qū)大量的地震剖面刻畫了該地區(qū)斷裂的幾何學(xué)、運(yùn)動(dòng)學(xué)特征以及其隨時(shí)間的傳播演化規(guī)律。該地區(qū)主要發(fā)育NW向和少量的N-S向斷裂。斷層陡直,大都切穿基底,除逆沖分量外,NW向斷裂還具有一定的左旋走滑分量,而N-S向斷裂則具有一定的右旋走滑特征,但走滑量相對(duì)于逆沖量來說可以忽略不計(jì)。研究區(qū)內(nèi)最老的斷裂為阿拉爾斷裂、昆北斷裂、昆北1號(hào)斷裂以及茫南斷裂,它們?cè)谡麄(gè)新生代都持續(xù)活動(dòng),推測(cè)可能是前新生代的老斷裂重新活動(dòng)的結(jié)果。這些斷裂在新生代整體不斷向北,向東傳遞,可能與其南側(cè)祁漫塔格的沖斷以及西側(cè)阿爾金斷裂系的活動(dòng)有關(guān)。(3)祁漫塔格地區(qū)磷灰石裂變徑跡以及(U-Th)/He結(jié)果表明祁漫塔格整體新生代初期已經(jīng)存在顯著隆升。熱史模擬顯示祁漫塔格在新生代經(jīng)歷了兩次快速隆升事件,第一期自新生代初期開始一直持續(xù)到40 Ma左右,之后進(jìn)入緩慢隆升階段;第二期自20 Ma開始,祁漫塔格地區(qū)再次進(jìn)入到強(qiáng)烈隆升階段。晚中新世以后,由于變形快速向北傳遞,祁漫塔格現(xiàn)今隆升已非常微弱。此外,磷灰石(U-Th)/He結(jié)果也表明祁漫塔格南峰(阿達(dá)灘斷裂以南)一直處于整體穩(wěn)定抬升狀態(tài),受局部構(gòu)造活動(dòng)影響較小,而北峰(阿達(dá)灘斷裂以北)明顯受局部斷裂影響較大,可能與它們經(jīng)歷了不同的前新生代構(gòu)造變形歷史有關(guān)。(4)柴西南與祁漫塔格之間的接觸關(guān)系在西邊為超覆不整合,向東則變?yōu)閿嗔呀佑|。結(jié)合前人的研究結(jié)果,本文提出了柴西南及鄰區(qū)的演化模型:①古新世至中始新世時(shí)期,盆地整體屬于填平補(bǔ)齊階段,盆地范圍在不斷擴(kuò)大,柴西南地區(qū)一些北西向的老斷裂開始活動(dòng),但活動(dòng)強(qiáng)度不大。阿爾金山還未隆升,祁漫塔格為晚古生代的繼承性局部隆起,為柴西南地區(qū)提供物源,部分分割了柴達(dá)木和庫木庫里盆地;②晚始新世時(shí)期(~47-35.5Ma,盆地范圍達(dá)到最大,水體加深,同時(shí)南山強(qiáng)烈隆升剝蝕,為其北側(cè)的柴西南地區(qū)提供充足的物源;③漸新世-旱中新世時(shí)期(~35.5-15.3Ma),阿爾金山開始顯著隆升,導(dǎo)致鄰近的紅柳泉、七個(gè)泉一帶發(fā)生強(qiáng)烈的斷裂活動(dòng),形成了上、下油砂山組之間的角度不整合,與此同時(shí)祁漫塔格地區(qū)處于相對(duì)構(gòu)造平靜期;④中中新世時(shí)期(~15.3-8Ma),阿爾金斷裂、東昆侖斷裂開始大規(guī)模走滑,導(dǎo)致青藏高原北緣發(fā)生一起構(gòu)造調(diào)整,祁漫塔格再一次快速隆升,表現(xiàn)為其東段向北沖斷至柴西南新生界之上;⑤上新世-至今(8-0Ma),變形開始由盆地周緣向盆地內(nèi)部快速擴(kuò)展,表現(xiàn)為在盆地內(nèi)部發(fā)育了大量NNW向背斜構(gòu)造和斷裂,最強(qiáng)烈的變形發(fā)生在英雄嶺位置,致使英雄嶺地區(qū)由原始沉積坳陷轉(zhuǎn)變?yōu)榇笮偷穆∑饏^(qū)。
[Abstract]:The northern margin of the Qun tge Qaidam Basin in the northern margin of the Qinghai Tibet Plateau is the area in the southwest of Qaidam Qaidam Basin. The northwest is bounded by Altun fault, and the south is close to the East Kunlun tectonic zone. It is the key site of the Qinghai Tibet Plateau geotectonics and the largest terrain elevation difference in the Qinghai Tibet Plateau. This shows that its tectonic activity since the Cenozoic era is strong and poor. The characteristics of the sedimentary tectonic evolution and the coupling relationship with the Qiman area are of great significance to the exploration of the uplift and evolution model of the whole Qinghai Tibet Plateau. This paper is based on the sedimentary tectonic response and the low temperature thermal chronology in the Qiman area. The evolution process of the Cenozoic in the southwest and its adjacent areas has been preliminarily recognized as follows: (1) the southwest of Qaidam is divided into several different tectonic units, and these sub units have different sedimentary tectonic evolution history. The Gus uplift in the west is a paleo uplift which has already existed in the late Mesozoic, and the alar sag on both sides is divided. Since the early Cenozoic, the formation of the strata has been overoverlying and eventually connected to the depression on both sides. The alalin and honglion slopes in the northwest side of the lelehe formation thickened to the AlTiN mountain, indicating that the Altun mountain was not uplifted at that time, and the Qaidam basin may be connected to the Southwest of the tower; from the lower dry wood ditch. At the beginning of the sedimentary period, the sedimentary center gradually migrated eastward to form a nose like uplift, and the lower oil sand mountain group had the largest uplift range and suffered erosion. Since the deposit of the upper oil sand mountain group, the Red Lion area changed into a simple and southeastern slope. In the early period of the generation, it showed an overall eastward slope, until the end of the lower oil sand mountain formation began to differentiate, formed a leap slope, the kkkkkk sag, the Zaha spring sag and the southern slope of the south. The absence of the sand mountain formation and the above strata in the East may mean a strong activity in the Qun Tagge area in this period. The southeastern corner of the southeastern end of the Cenozoic has been steadily deposited until the early stage of the lower oil sand mountain formation, which may be related to the activities of the Qun tagagu; the heroic ridge anticline structure of the north east side Since the Cenozoic era, the sedimentary center of Southwest Qaidam has been located in the southwest of Chai Chai formation (3Ma), which has become the largest and most active anticline belt in the present basin. (2) through a large number of seismic profiles in southwestern Qaidam area, the geometry, kinematics characteristics and its time propagation in this area are described. The region mainly develops NW direction and a small number of N-S trending faults. The fault is steep and mostly cut through the basement. Except for the thrust component, NW also has a certain left-hand slip component, while the N-S direction fault has a certain dextral strike slip feature, but the strike slip amount is negligible relative to the inverse impulse. The oldest fracture in the study area is not. For the alar fault, the kunbei fault, the kunbei No. 1 fault and the mannan fault, they are continuously active throughout the Cenozoic, presumably the result of the reactivity of the old Cenozoic old faults. These faults are continuously north and eastward to the Cenozoic, and may be broken down from the southern Qun tge and the activity of the Altun fault on the west side. (3) the apatite fission track in the Qiman area and (U-Th) /He results show that there have been significant uplift in the early Cenozoic of the Qimen tage. The thermal history simulation shows that Qiman tage experienced two rapid uplift events in the Cenozoic, and the first period started from the beginning of the Cenozoic to about 40 Ma, and then entered the slow uplift. During the second period, the second period began with 20 Ma, and the Qiman area again entered the strong uplift stage. After the late Miocene, the current uplift of Qiman tage was very weak because of the rapid northward transfer of the deformation. In addition, the apatite (U-Th) /He results also indicated that the Qiman (south of the A Da beach fault) had been in a steady state of stability and uplift. The northern peak (north of the ADA beach fault) is obviously influenced by the local fault, and it may be related to the different history of the tectonic deformation of the former Cenozoic. (4) the contact relationship between the southwest Chai and qununtag is the overlying unconformity in the West and the fracture contact to the East. The evolution model of Southwestern Qaidam and its adjacent areas was proposed: 1. During the period of the Paleocene to the middle Eocene, the whole basin belonged to the stage of filling and filling, the basin range was expanding, and some old faults in the North Western Qaidam area began to move, but the activity was not strong. The Altun mountain was not uplifted and the qimintage was a inherited partial uplift of the late Paleozoic. To provide material source for Southwest Chai, the Chaidamu and kuimuali basin were partially divided; (2) the late Eocene period (~ 47-35.5Ma, the basin range was the largest, the water depth was deepened, and the south mountain was strongly uplifted and denuded, providing sufficient source for the southwestern Qaidam area; (3) the Oligocene to the Miocene epoch (~ 35.5-15.3Ma), the AlTiN mountain began. The significant uplift resulted in the strong fracture activity in the vicinity of the red willow spring and the seven springs, which formed the unconformity between the upper and lower oil sand mountain groups, while the qimintag area was in the relative tectonic calm period; (4) the middle Miocene period (to 15.3-8Ma), the Altun fault and the East Kunlun fault began to slide on a large scale, leading to the Qinghai Tibet Plateau. There is a structural adjustment in the northern margin, and the qimatuge is once again rapidly uplifting, showing that the east section of its east segment has broken northward to the Cenozoic in southwestern Qaidam; (5) the Pliocene - today (8-0Ma), the deformation began to rapidly expand from the basin margin to the basin, showing that a large amount of NNW anticline structures and faults were developed inside the basin, and the most intense deformation occurred in the basin. The heroic ridge position resulted in the transformation of the heroic ridge area from the original sedimentary depression to a large uplift area.
【學(xué)位授予單位】:浙江大學(xué)
【學(xué)位級(jí)別】:博士
【學(xué)位授予年份】:2017
【分類號(hào)】:P542
【相似文獻(xiàn)】
相關(guān)期刊論文 前10條
1 ;《祁漫塔格地區(qū)地質(zhì)找礦專集》征稿啟事[J];西北地質(zhì);2010年03期
2 何書躍;舒樹蘭;劉永樂;陳海福;劉智剛;;青海祁漫塔格地區(qū)有效找礦方法總結(jié)[J];礦床地質(zhì);2013年01期
3 伍躍中;莊道澤;李洪茂;雷永孝;王立社;雷學(xué)武;陳建中;胡華偉;時(shí)友東;張廷秀;高曉峰;喬耿彪;陳登輝;段星星;;新疆祁漫塔格找礦遠(yuǎn)景區(qū)重要礦產(chǎn)整裝勘查[J];西北地質(zhì);2010年04期
4 豐成友;張大權(quán);李東生;孫艷;李國(guó)臣;馬圣鈔;;青海祁漫塔格地區(qū)成礦規(guī)律研究[J];礦床地質(zhì);2010年S1期
5 高曉峰;校培喜;謝從瑞;過磊;董增產(chǎn);奚仁剛;康磊;;祁漫塔格地區(qū)構(gòu)造-巖漿作用與成礦[J];西北地質(zhì);2010年04期
6 李文淵;;祁漫塔格找礦遠(yuǎn)景區(qū)地質(zhì)組成及勘查潛力[J];西北地質(zhì);2010年04期
7 張愛奎;莫宣學(xué);李云平;呂軍;曹永亮;舒曉峰;李華;;青海西部祁漫塔格成礦帶找礦新進(jìn)展及其意義[J];地質(zhì)通報(bào);2010年07期
8 高永寶;李文淵;譚文娟;;祁漫塔格地區(qū)成礦地質(zhì)特征及找礦潛力分析[J];西北地質(zhì);2010年04期
9 何書躍;陳海福;田三春;張愛奎;郭桂蘭;;青海祁漫塔格地區(qū)找礦勘探新進(jìn)展[J];礦床地質(zhì);2010年S1期
10 張普斌;石菲菲;張建國(guó);徐國(guó)端;楊自安;;青海省祁漫塔格地區(qū)成礦亞帶劃分及前景分析[J];礦產(chǎn)與地質(zhì);2012年04期
相關(guān)會(huì)議論文 前4條
1 陳小寧;袁萬明;段宏偉;;東昆侖祁漫塔格地區(qū)燕山期以來巖漿作用與構(gòu)造裂變徑跡研究[A];中國(guó)地質(zhì)學(xué)會(huì)2013年學(xué)術(shù)年會(huì)論文摘要匯編——S14幔源巖漿活動(dòng)及其巖漿成礦作用:背景、機(jī)制與標(biāo)志分會(huì)場(chǎng)[C];2013年
2 譚文娟;李文淵;楊合群;高永寶;姜寒冰;;祁漫塔格地區(qū)鐵多金屬礦床成因探討[A];中國(guó)礦物巖石地球化學(xué)學(xué)會(huì)第12屆學(xué)術(shù)年會(huì)論文集[C];2009年
3 豐成友;張德全;李東生;佘宏全;李進(jìn)文;王松;;青海祁漫塔格成礦帶斑巖-矽卡巖多金屬成礦作用時(shí)限及動(dòng)力學(xué)背景[A];中國(guó)礦物巖石地球化學(xué)學(xué)會(huì)第12屆學(xué)術(shù)年會(huì)論文集[C];2009年
4 李侃;高永寶;錢兵;何書躍;劉永樂;;祁漫塔格虎頭崖鉛鋅多金屬礦區(qū)花崗巖地球化學(xué)及其構(gòu)造背景探討[A];中國(guó)地質(zhì)學(xué)會(huì)2013年學(xué)術(shù)年會(huì)論文摘要匯編——S11西北地區(qū)重要成礦帶成礦規(guī)律與找礦突破分會(huì)場(chǎng)[C];2013年
相關(guān)重要報(bào)紙文章 前2條
1 記者 賈明;我省一地質(zhì)找礦研究成果達(dá)到國(guó)內(nèi)領(lǐng)先水平[N];青海日?qǐng)?bào);2012年
2 江萬;青海祁漫塔格礦田構(gòu)造研究取得重要進(jìn)展[N];中國(guó)黃金報(bào);2013年
相關(guān)博士學(xué)位論文 前2條
1 魏巖巖;柴西南新生代沉積和構(gòu)造特征及其與祁漫塔格的構(gòu)造耦合[D];浙江大學(xué);2017年
2 王秉璋;祁漫塔格地質(zhì)走廊域古生代—中生代火成巖巖石構(gòu)造組合研究[D];中國(guó)地質(zhì)大學(xué)(北京);2012年
相關(guān)碩士學(xué)位論文 前5條
1 楊濤;青海祁漫塔格地區(qū)它溫查漢西鐵多金屬礦床地質(zhì)特征及成因探討[D];長(zhǎng)安大學(xué);2015年
2 賈建團(tuán);青海祁漫塔格地區(qū)?囝^鐵多金屬礦床特征研究[D];中國(guó)地質(zhì)大學(xué)(北京);2013年
3 舒樹蘭;青海省祁漫塔格地區(qū)多金屬成礦潛力研究[D];中國(guó)地質(zhì)大學(xué)(北京);2013年
4 劉渭;祁漫塔格地區(qū)虎頭崖礦田控礦構(gòu)造及矽卡巖礦床成礦規(guī)律[D];長(zhǎng)安大學(xué);2014年
5 孔德峰;青海省尕林格鐵多金屬礦床成礦作用與成因分析[D];中南大學(xué);2014年
,本文編號(hào):1810645
本文鏈接:http://sikaile.net/shoufeilunwen/jckxbs/1810645.html