基于TRMM PR和VIRS探測的西北太平洋臺風云參數(shù)和降水特征
發(fā)布時間:2018-04-19 12:05
本文選題:TRMM + PR; 參考:《中國科學技術(shù)大學》2016年博士論文
【摘要】:西北太平洋(Northwest Pacific,簡稱NWP)是全球臺風(Tropical Cyclone,簡稱TC)的頻發(fā)海域,該區(qū)域的臺風云參數(shù)和降水研究,有助于我們充分認識臺風生成、演變和消散特征以及氣候反饋效應(yīng),同時為模式中臺風成云致雨過程的模擬提供觀測依據(jù),進而提高臺風路徑和強度預報能力。本論文利用熱帶測雨衛(wèi)星TRMM上搭載的測雨雷達(PR)和可見/紅外掃描儀(VIRS)的探測資料和TMPA 3B42 (TRMM Multi-satellite Precipitation Analysis 3B42)資料,結(jié)合JAXA(日本空間發(fā)展署)、CMA(國家氣象局)提供的熱帶氣旋資料,研究了西北太平洋臺風云系云參數(shù)特征和臺風降水貢獻(TC precipitaiton contribution,簡稱TCPC)特征,并對比分析了臺風降水和非臺風降水在降水強度、降水頻次、垂直結(jié)構(gòu)、深對流和穿透性對流活動等方面的差異。1 臺風降水云和非降水云云參數(shù)特征通過PR與VIRS的融合資料和反演的云參數(shù),對西北太平洋臺風系統(tǒng)中降水云(precipitaiting clouds,簡稱PC)和非降水云(non-precipitaiting clouds,簡稱NPC)云參數(shù)特征進行分析,結(jié)果表明:1)臺風系統(tǒng)內(nèi)降水云和非降水云的云滴有效粒子半徑(effective radius,簡稱Re)的差異小,而PC的光學厚度(cloud optical thickness,簡稱COT)明顯高于NPC,前者多變化于40~140之間,后者多小于40:PC的云水路徑(Cloud water path,簡稱CWP)明顯高于NPC,120g/m2可以認為是兩者之間的閾值。2)地表降水概率與云參數(shù)之間關(guān)系的分析表明,降水概率隨著光學厚度和云水路徑的增加而逐漸增大:而隨著云滴有效粒子半徑的增加,降水概率先增大后減小。當云系的云水路徑小于1000 g/m2時,降水概率隨著云水路徑的增加而增大,與云滴有效粒子半徑的大小無關(guān):當云水路徑超過1000g/m2時,降水概率則是云滴有效粒子半徑和云水路徑的函數(shù)?傮w上,大云滴粒子半徑和大云水路徑更容易產(chǎn)生降水。3)云參數(shù)閾值識別降水的分析結(jié)果表明,光學厚度大于40、云水路徑高于120 g/ms且光學厚度大于40、10.8微米通道亮溫低于260K且光學厚度高于50,這三個指標對降水的識別效果好,TS評分分別為0.48,0.48和0.50。該閾值識別方法同樣適用于MODIS云產(chǎn)品,為我們利用衛(wèi)星觀測識別降水提供了新的途徑。2 臺風和非臺風降水及光譜特征通過對JAXA/EORC熱帶臺風數(shù)據(jù)集資料的分析,實現(xiàn)了臺風區(qū)和非臺風區(qū)的分離,并結(jié)合對PR和VIRS的融合觀測資料的分析,結(jié)果揭示了1998-2007年東亞雨季臺風及非臺風降水的氣候特征和降水云紅外信號特征:1)東亞臺風降水強度譜較非臺風降水譜更寬,特別是臺風中對流降水強度譜分布可5-20mm/h之間。2)東亞地區(qū)降水的主要形式是非臺風層云降水,頻次可達60%以上;臺風層云和對流降水頻次較小,最大僅能達20%和5%。3)臺風和非臺風降水的垂直結(jié)構(gòu)在凍結(jié)層之下(~4 km)差異明顯,臺風對流降水云隨著云頂亮溫減小,凍結(jié)層之下降水率隨高度減小而迅速增大,非臺風對流降水則幾乎保持不變。4)臺風降水云較非臺風降水云的云頂亮溫更低,兩者的概率密度峰值差異可達15K。3 臺風降水貢獻特征結(jié)合CMA提供的臺風最佳路徑數(shù)據(jù)集資料,通過對逐3小時,0.250分辨率的TMPA 3B42降水數(shù)據(jù)產(chǎn)品分析,研究了西北太平洋地區(qū)臺風降水貢獻的季節(jié)變化、月變化以及年變化特征。結(jié)果表明:1)整個臺風季(5月~12月),臺風降水貢獻從洋面向內(nèi)陸遞減,150N-250N之間的洋面可達40%,而內(nèi)陸地區(qū)僅為4%。此外,強臺風對總降水的貢獻較弱臺風更大。2)在月尺度上,逐月的臺風降水對局地總降水的貢獻最大可達60%,其中8月份臺風降水對整個西太洋總降水的貢獻達到峰值(28%),而臺風降水對陸面總降水的貢獻則在12月達到峰值(23%)。3)在年尺度上,臺風降水對整個西太洋面總降水的貢獻于2004年達到峰值(~30%);對陸面總降水的貢獻則在1998年達到峰值(~20%)。4)E1Nino年和La Nina年臺風降水貢獻差異較大,El Nino年臺風降水貢獻較中性年增長了約6%,而La Nina年則較中性年減少了6%。4 臺風和非臺風系統(tǒng)的深對流和穿透性對流通過對1998~2011年6月至9月PR降水廓線資料的分析,研究了西北太平洋地區(qū)臺風系統(tǒng)和非臺風系統(tǒng)中深對流和穿透性對流活動的差異,并分析了臺風活動占西北太平洋地區(qū)總的深對流和穿透性對流活動的比例。結(jié)果表明:1)西北太平洋臺風中深對流和穿透性對流活動主要發(fā)生在洋面,以15°N-25°N之間洋面出現(xiàn)頻次最高:而非臺風中深對流和穿透性對流活動則在陸面出現(xiàn)頻繁。2)臺風中深對流和穿透性對流降水頻次較低,分別為0.01%~0.15%之間和0.005%~0.02%之間:而非臺風中深對流和穿透性對流降水頻次較高,分別可達0.15%和0.02%以上。3)臺風中深對流和穿透性對流降水強度大,在西北太平洋的大部分地區(qū)降水強度分別超過14 mm/h和22 mm/h,且空間分布不均。非臺風中深對流(穿透性對流)降水強度較小,主要分布在10 mm/h~14 mm/h(10 mm/h ~18 mm/h).4)西北太平洋上發(fā)生的深對流事件中2%~30%由臺風系統(tǒng)貢獻,穿透性對流事件中臺風活動所占比例明顯增加,比例可達到50%以上。
[Abstract]:The Northwest Pacific (NWP) is the frequent sea area of the global Tropical Cyclone (TC). The study of the typhoon parameters and precipitation in this area will help us to fully understand the formation, evolution and dissipation of typhoon and the effect of climate feedback, and provide the observation for the simulation of typhoon cloud induced rain in the model. According to this, the typhoon track and intensity prediction ability is improved. This paper uses the detection data of the rain measurement radar (PR) and the visible / infrared scanner (VIRS) on the tropical rain satellite TRMM and the TMPA 3B42 (TRMM Multi-satellite Precipitation Analysis 3B42) data, combined with the heat provided by JAXA (the Japan Space Development Agency) and the CMA (National Meteorological Administration). With cyclonic data, the characteristics of cloud parameters and typhoon precipitation contribution (TC precipitaiton contribution, TCPC) in the Northwest Pacific platform are studied, and the differences of typhoon precipitation and non typhoon precipitation in precipitation intensity, precipitation frequency, vertical structure, deep convection and penetrating convective activity are compared and analyzed in.1 typhoon precipitation clouds. The parameters of the non precipitation cloud and cloud parameters are analyzed by the fusion data of PR and VIRS and the retrieved cloud parameters. The characteristics of the cloud parameters of the precipitaiting clouds (precipitaiting clouds, PC) and the non-precipitaiting clouds (NPC) in the Northwest Pacific typhoon system are analyzed. The results show that: 1) the droplets of the descending and non dehydrating clouds in the typhoon system The difference in the effective particle radius (effective radius, Re) is small, while the optical thickness of PC (cloud optical thickness, for short, COT) is obviously higher than NPC, the former is more than 40~140, and the latter is more than 40:PC (Cloud water) is obviously higher than that of the threshold. The analysis of the relationship between the water probability and the cloud parameters shows that the probability of precipitation increases with the increase of the optical thickness and the cloud water path. With the increase of the effective particle radius of the cloud droplets, the precipitation probability increases first and then decreases. When the cloud water path is less than 1000 g/m2, the probability of precipitation increases with the increase of the cloud water path, with the cloud droplet. The size of the effective particle radius is independent: when the cloud water path is more than 1000g/m2, the precipitation probability is a function of the effective particle radius and cloud water path of the cloud droplets. On the whole, the large cloud droplet radius and the large cloud water path are easier to produce precipitation.3). The analysis results of the cloud parameter threshold recognition precipitation show that the optical thickness is greater than 40 and the cloud water path is higher than 120 g /ms and the optical thickness greater than the 40,10.8 micron channel are lower than 260K and the optical thickness is higher than 50. The three indexes are good for the recognition of precipitation. The TS score is 0.48,0.48 and 0.50., respectively. The threshold recognition method is also suitable for MODIS cloud products. It provides a new way for us to use satellite observation to identify water reduction,.2 typhoon and non typhoon precipitation. By analyzing the data of the JAXA/EORC tropical typhoon data set, the spectral features have been separated from the typhoon and non typhoon regions. Combined with the analysis of the fusion observation data of PR and VIRS, the results reveal the climatic characteristics of the typhoon and non typhoon precipitation in the East Asia during the 1998-2007 years and the characteristics of the infrared signal of the descending cloud: 1) the intensity of typhoon precipitation in East Asia. The degree spectrum is more wide than the non typhoon precipitation spectrum, especially the intensity spectrum distribution of the convective precipitation in the typhoon can be 5-20mm/h.2) the main form of the precipitation in East Asia is the non typhoon cloud precipitation, the frequency can reach 60%, the typhoon layer and the convective precipitation frequency are smaller, the maximum can reach 20% and 5%.3) and the vertical structure of typhoon and non typhoon precipitation is in the freezing layer. The difference of (~ 4 km) is obvious, the typhoon convective precipitation cloud decreases with the cloud top, the precipitation rate under the freezing layer decreases with the height, and the non typhoon convective precipitation is almost constant.4). The typhoon precipitation cloud is lower than that of the non typhoon dehydrating cloud, and the difference of the peak probability density of the two is up to the 15K.3 typhoon precipitation contribution. According to the data set from the best typhoon path provided by CMA, the seasonal variation, monthly and annual variation of typhoon precipitation in the Northwest Pacific region are studied by analyzing the TMPA 3B42 precipitation data of 3 hours and 0.250 resolutions. The results show that: 1) the typhoon precipitation contribution from the ocean is from the ocean to the ocean in the whole typhoon season (May to December). Inland decline, the ocean surface between 150N-250N can reach 40%, while the inland area is only 4%.. The contribution of strong typhoon to total precipitation is weaker than that of typhoon.2). On monthly scale, the contribution of monthly typhoon precipitation to local total precipitation is up to 60%. In August, the contribution of typhoon precipitation to the total Western Pacific Ocean total precipitation reached its peak (28%), and typhoon in August. The contribution of precipitation to total land surface precipitation reached its peak in December (23%).3). On the annual scale, the contribution of typhoon precipitation to the total Western Pacific Ocean Surface Precipitation reached its peak value in 2004 (~ 30%), and the contribution of the total precipitation to the land surface reached its peak in 1998 (to 20%).4). The precipitation contribution of typhoon precipitation in E1Nino and La Nina was great, and the typhoon dropped in El Nino year. The contribution of water to the neutral year increased by about 6%, while the La Nina year reduced the deep convective and penetrating convection of the 6%.4 typhoon and non typhoon system by analyzing the data of the PR precipitation profile of the PR from June to September, and the difference between the deep convection and the penetrating convective activity in the typhoon system and the non typhoon system in the Northwest Pacific region. The ratio of typhoon activities to the total convective and penetrating convective activities in the Northwest Pacific region is analyzed. The results show that: 1) deep convection and penetrating convective activity in the Northwest Pacific typhoon mainly occur on the ocean surface, with the highest frequency in the ocean surface between 15 degrees N-25 degrees, but not the typhoon middle deep convection and the penetrating convective activity in the Northwest Pacific. Frequent.2 in the surface of the land, the frequency of deep convective and penetrating convective precipitation in typhoon is lower, which is between 0.01% and 0.15% and 0.005% to 0.02%, respectively, but not in typhoon middle deep convection and penetrating convective precipitation, which can be up to 0.15% and more than 0.02%.3 respectively). The precipitation intensity in most areas is more than 14 mm/h and 22 mm/h respectively, and the spatial distribution is uneven. The intensity of non typhoon middle deep convection (penetrating convective) precipitation is smaller, mainly distributed in 10 mm/h ~ 14 mm/h (10 mm/h to 18 mm/h).4) and 2% to 30% is contributed by typhoon system in the Deep Convective Events on the Northwest Pacific Ocean. The proportion of movements increased significantly, and the proportion could reach above 50%.
【學位授予單位】:中國科學技術(shù)大學
【學位級別】:博士
【學位授予年份】:2016
【分類號】:P412.27
【相似文獻】
相關(guān)期刊論文 前1條
1 劉鵬;李崇銀;王雨;傅云飛;;基于TRMM PR探測的熱帶及副熱帶對流和層云降水氣候特征分析[J];中國科學:地球科學;2012年09期
相關(guān)會議論文 前1條
1 傅云飛;李銳;劉國勝;;基于TRMM PR和TMI對亞洲降水結(jié)構(gòu)特征的分析[A];推進氣象科技創(chuàng)新加快氣象事業(yè)發(fā)展——中國氣象學會2004年年會論文集(下冊)[C];2004年
相關(guān)博士學位論文 前1條
1 陳鳳嬌;基于TRMM PR和VIRS探測的西北太平洋臺風云參數(shù)和降水特征[D];中國科學技術(shù)大學;2016年
,本文編號:1773028
本文鏈接:http://sikaile.net/shoufeilunwen/jckxbs/1773028.html
最近更新
教材專著