基于結構計算的分子動力學參數(shù)和共振態(tài)研究
本文選題:結構計算 + 多參考組態(tài)相互作用 ; 參考:《中國科學技術大學》2017年博士論文
【摘要】:隨著先進光源技術進步,原子分子物理實驗和理論研究都取得了快速發(fā)展。例如,基于第三代同步輻射技術發(fā)展的X射線散射方法,可以精確測量出原子動力學參數(shù);利用自由電子激光技術,可以在飛秒甚至更快的時間尺度上對原子分子動力學過程進行調(diào)控。前者可以提供精確的形狀因子平方(Squared Form Factor,SFF),該參數(shù)可以很好地表征原子分子基態(tài)和激發(fā)態(tài)波函數(shù)在不同空間尺度區(qū)域的行為;后者可以用于研究原子分子亞穩(wěn)態(tài)的動力學行為,并且新發(fā)現(xiàn)了諸如原子間庫倫衰變(interatomic coloumb decay,ICD)這種有趣的現(xiàn)象。原則上,一階Born近似下原子分子動力學參數(shù)的計算精度,僅僅取決于結構計算的精度。以往的實驗證明,X射線和原子體系(He、Ne、Ar)的散射中,一階Born近似成立。然而對于X射線和分子體系的散射,一階Born近似的成立情況尚不清楚。同時,基于玻恩-奧本海默近似計算的分子結構精度,也有待進一步的檢驗。因此,有必要開展X射線和分子的散射實驗,以及相關的理論計算,來驗證一階Born近似的成立性,并評估分子結構計算方法的精確度。對于共振態(tài),由于其波函數(shù)具有一定的局域特性,可以采用一些特殊手段,利用束縛態(tài)計算方法進行研究。分子結構的計算方法眾多,在本文中采用基于變分原理的"多參考單雙激發(fā)的組態(tài)相互作用方法(multi-reference single and double excitation configuration interaction,MRSDCI/MRCI)"來計算束縛態(tài)的結構,并將該方法拓展至復數(shù)區(qū)域,結合復坐標旋轉方法(complex coordinate rotation method,CRM)以及復吸收勢法(complex absorption potential,CAP),用于原子分子的共振態(tài)以及ICD態(tài)的計算。本論文的具體工作如下:(1)采用MRCI方法計算了 H_2以及N_2的電子態(tài)結構,并結合一階Born近似計算了相應的彈性以及非彈性的動力學結構參數(shù),同時采用非彈性X射線散射方法測量了 N_2在12-13.3eV激發(fā)能區(qū)振動分辨的動力學參數(shù)。對于簡單的體系H_2,非相對論的漸進能量計算精度很高,且動力學參數(shù)的計算結果和X射線散射實驗結果符合很好。對于較復雜的體系N_2,動力學參數(shù)的計算結果和實驗結果也符合很好,同時發(fā)現(xiàn)對于部分態(tài),中能和高能電子能量損失譜方法未能達到一階Born近似。以上結果成功證實了 X射線和分子體系散射中一階Born近似的成立性,拓展了X射線散射方法作為實驗基準數(shù)據(jù)的評估范圍。另一方面,H_2動力學參數(shù)的計算結果和X射線散射實驗結果的差異似乎較為反常,其背后可能有值得考慮的物理機制;(2)發(fā)展了計算一維分子振轉共振態(tài)的CRM/CAP+DVR方法,可以精確計算雙原子分子振轉亞穩(wěn)態(tài)的共振能級和自解離速率。利用該方法計算了 Cu_2和LiH~-分子的振轉自解離態(tài),對于CU_2~-的解離速率,采用CRM+DVR方法計算的結果和使用WKB近似計算的結果差別了近一個數(shù)量級,說明WKB近似對于大質(zhì)量的粒子并不適用。LiH-共振能級和寬度的計算結果和分子軌道強耦合方法(QMOCC)的計算結果符合很好,兩種方法互相驗證了可靠性,而本文的CAP+DVR方法同時還可以輔助標注各個共振峰對應的振轉態(tài)的量子數(shù);(3)成功實現(xiàn)以CRM+MRCI方法計算原子分子Feshbach共振態(tài)。通過計算Nq+(q=2-5)離子的k殼層空穴態(tài)的共振參數(shù),摸索出合適的基組選擇方法,得出了 28個共振Auger態(tài)的能級和寬度數(shù)據(jù),計算結果與其他理論和實驗值符合很好,并驗證了與自旋相關的Auger速率關系。成功計算了He_2~+的ICD態(tài)寬度,相對于其他方法,本文的CRM+MRCI方法采用更小的基組和計算量,獲得精度相當?shù)挠嬎憬Y果。
[Abstract]:With the advanced light source technology, atomic and molecular physics experiments and theoretical research have achieved rapid development. For example, X ray scattering method of third generation synchrotron radiation based on the development of technology, can accurately measure the atomic dynamics parameters; using free electron laser technology, can even femtosecond faster time scales of atomic and molecular dynamics in the process of regulation. The former can provide accurate square shape factor (Squared Form, Factor, SFF), the parameters can be well characterized molecular and atomic ground state excited state wave function at different spatial scales in the area of behavior; the latter can be used to study the dynamics of metastable atoms and molecules, and the newly discovered atoms such as Kulun decay (interatomic Coloumb decay, ICD) this interesting phenomenon. In principle, calculation of the first order Born approximation in atomic and molecular dynamics parameters of precision, simply In the structure calculation accuracy. The experiment proved that, X rays and atomic system (He, Ne, Ar) scattering in the first order Born approximation is established. However, for X ray scattering and molecular system, the establishment of the first order Born approximation is not clear. At the same time, Born - Oppenheimer in the molecular structure of precision based on calculation, also needs to be further tested. Therefore, it is necessary to carry out X X-ray scattering experiments and molecular computation, and the related theories, to verify the validity of the first order Born approximation, and the calculation method of molecular structure accuracy. For resonance due to the wave function with local characteristics, we can use some special means, use bound calculation methods were studied. Many calculation methods of molecular structure, the multireference single and double excitation configuration interaction method based on the variational principle "in this paper (multi-reference single and Dou Ble excitation configuration interaction, MRSDCI/MRCI) "to calculate the structure of the bound state, and this method is extended to complex area, combined with the complex coordinate rotation method (complex coordinate rotation method, CRM) and the complex absorption potential (complex absorption potential, CAP method), used in atomic and molecular resonances and calculation of ICD state. The specific work this paper is as follows: (1) using MRCI H_2 method and electronic structure of N_2 is calculated, and combined with the first-order Born corresponding elastic and inelastic dynamic structural parameters were calculated using non elastic approximation and X ray scattering method N_2 kinetic parameters of vibration excitation in 12-13.3eV resolution measurement system for H_2. Simple, non relativistic asymptotic energy has very high calculation precision, calculation results and kinetic parameters of X and X-ray scattering is consistent with the experimental results. For more complex body. Department of N_2, the calculation results of kinetic parameters and experimental results are in good agreement, also found that for part of the state, and in high energy electron energy loss spectroscopy method can meet the first order Born approximation. The above results confirmed the successful establishment of the first order Born approximation in X ray system and molecular scattering, extended X ray scattering method as the experimental reference data to assess the scope. On the other hand, the difference calculation results of kinetic parameters of H_2 and X ray scattering of experimental results is likely to be abnormal, which might be behind a physical mechanism worthy of consideration; (2) the development of the CRM/CAP+DVR method in the calculation of one-dimensional molecular vibrational resonances. The resonance level can be accurately calculated for diatomic molecules rovibrational metastable and self dissociation rate. Cu_2 and LiH~- molecular rovibrational self dissociation is calculated by using the method, the dissociation rate of CU_2~-, and the results calculated by CRM+DVR method Using the WKB approximate calculation results differ by nearly an order of magnitude, indicating that WKB approximate calculation results for large mass particles is not suitable for.LiH- and the width of the resonance level and the molecular orbital coupling method (QMOCC) calculation results are in good agreement with each other, the two methods to verify the reliability of the CAP+DVR method in this paper, and at the same time you can also assist marked quantum number of each resonance peak corresponds to the rovibrational states; (3) the successful implementation of the CRM+MRCI method in the calculation of atomic and molecular resonances. Through the calculation of Nq+ Feshbach (q=2-5) k resonance parameters of shell holes ions, find out suitable basis set selection method, the level and width of data 28 Auger resonance state, the calculated results are compared with other theoretical and experimental values are in good agreement, and verify the Auger rate relationship with spin dependent. The success of the He_2~+ ICD state width was calculated and compared with other methods, this paper CRM+MRCI The method uses the smaller base group and the amount of calculation to obtain the accurate calculation results.
【學位授予單位】:中國科學技術大學
【學位級別】:博士
【學位授予年份】:2017
【分類號】:O561
【相似文獻】
相關期刊論文 前10條
1 劉婉如;趙素雯;;用正交法定動力學參數(shù)[J];應用概率統(tǒng)計;1987年02期
2 丁勇;;靜注和靜滴米氏消除動力學參數(shù)估計[J];生物數(shù)學學報;1989年01期
3 孫玉希,于游,張洪林,王洪啟;差示掃描量熱法確定5種氨基酸的熱動力學參數(shù)[J];曲阜師范大學學報(自然科學版);2005年01期
4 蔣廷惠,鄭紹建,石錦芹,胡靄堂,史瑞和,徐茂;植物吸收養(yǎng)分動力學研究中的幾個問題[J];植物營養(yǎng)與肥料學報;1995年02期
5 李莉,譚志誠,孟霜鶴;燒蝕材料的熱分解動力學研究[J];空間科學學報;1999年03期
6 魏永生,鄭敏燕;動力學參數(shù)微機輔助測量系統(tǒng)[J];青海大學學報(自然科學版);1999年01期
7 牛勝利;韓奎華;路春美;;非等溫條件下丙酸鈣熱解的動力學參數(shù)計算[J];科學通報;2010年23期
8 祁正興;長鏈脂肪酸體系固-液相變動力學參數(shù)的求解[J];青海師范大學學報(自然科學版);2001年01期
9 于海濤,,池玉娟;一種計算腐蝕動力學參數(shù)軟件的設計與應用[J];黑龍江大學自然科學學報;1998年03期
10 何奇瑾;周廣勝;周莉;王云龍;;盤錦蘆葦濕地空氣動力學參數(shù)動態(tài)及其影響因子[J];應用生態(tài)學報;2008年03期
相關會議論文 前7條
1 張方同;張林翎;周興龍;;穿鞋與裸足對自由縱跳動力學參數(shù)影響的研究[A];第十六屆全國運動生物力學學術交流大會(CABS 2013)論文集[C];2013年
2 余虎;侯宏;;基于寬帶短脈沖的粘彈性材料動力學參數(shù)寬頻測試[A];2012全國環(huán)境聲學學術會議論文集[C];2012年
3 張宏;嚴雋陶;馬惠f;門志濤;童仙君;苗志杰;;推拿■法操作動力學參數(shù)優(yōu)化實驗研究[A];中華中醫(yī)藥學會推拿分會第九屆推拿學術年會暨浙江省中醫(yī)藥學會推拿分會繼續(xù)教育項目論文匯編[C];2006年
4 馬建軍;劉豐軍;高笑娟;賈振華;;樁基主共振響應的動力學參數(shù)效應研究[A];第23屆全國結構工程學術會議論文集(第Ⅰ冊)[C];2014年
5 李瑋;;克拉霉素熱分解機理研究及動力學參數(shù)測定[A];抗生素質(zhì)量與安全論壇論文集[C];2008年
6 王文;王佩合;張會東;孫瑞成;李悅;逯淑琴;劉云平;;自發(fā)性高血壓大鼠與京都威斯特大鼠血液動力學參數(shù)[A];中國實驗動物學會第六屆學術年會論文集[C];2004年
7 劉忠權;王近中;徐瑞俊;畢武萍;戎馴彪;柳兆榮;李惜惜;;乙醛對心血管動力學參數(shù)的影響[A];全國第一屆生物力學學術會議論文匯編[C];1981年
相關博士學位論文 前2條
1 邊兆英;動力學信息導引的動態(tài)PET優(yōu)質(zhì)成像方法研究[D];南方醫(yī)科大學;2015年
2 彭裔耕;基于結構計算的分子動力學參數(shù)和共振態(tài)研究[D];中國科學技術大學;2017年
相關碩士學位論文 前7條
1 衛(wèi)亭;噪聲環(huán)境下時滯耦合網(wǎng)絡的動力學參數(shù)和網(wǎng)絡拓撲結構識別[D];陜西師范大學;2015年
2 王雪麗;近生理條件下簡單、快速地測量脫氧核酶切割RNA反應的動力學參數(shù)[D];吉林大學;2005年
3 趙文文;可燃物熱自燃動力學參數(shù)的多點法實驗研究[D];中國科學技術大學;2015年
4 高金泉;量熱法測定抗白血病藥物的熱動力學參數(shù)[D];東北師范大學;2015年
5 武永鵬;動力學參數(shù)測量裝置的研究與實現(xiàn)[D];中北大學;2014年
6 李彬;動力學參數(shù)對葉輪沖蝕與空蝕交互磨損的影響研究[D];湖南科技大學;2014年
7 董廣寧;船舶機械結構結合面動力學參數(shù)識別的研究[D];大連理工大學;2008年
本文編號:1731052
本文鏈接:http://sikaile.net/shoufeilunwen/jckxbs/1731052.html