天堂国产午夜亚洲专区-少妇人妻综合久久蜜臀-国产成人户外露出视频在线-国产91传媒一区二区三区

極端相對論核—核碰撞中的雙輕子、光子和輕矢量介子產(chǎn)生

發(fā)布時間:2018-04-04 14:19

  本文選題:雙輕子 切入點:光子 出處:《云南大學》2016年博士論文


【摘要】:在極端相對論重離子碰撞中,微擾量子色動力學(perturbative Quantum Chromodynamics, pQCD)預言在碰撞中心區(qū)域物質(zhì)能量密度可以足夠高而形成夸克物質(zhì)解禁相。在高能重離子碰撞中,碰撞中心區(qū)域能物質(zhì)量密度很高使得物質(zhì)離開強子相進入夸克物質(zhì)解禁相(Glasma和夸克-膠子等離子體),然后夸克物質(zhì)繼續(xù)膨脹冷卻回到強子相。當物質(zhì)處于Glasma和熱夸克-膠子等離子體相時,夸克物質(zhì)中部分子之間相互作用產(chǎn)生的雙輕子、光子和輕矢量介子(ρ、ω、φ)就會攜帶夸克物質(zhì)的信息。本文研究相對論重離子對撞機(Relativistic Heavy Ion Collider, RHIC)和大型強子對撞機(Large Hadron Collider, LHC)能區(qū)相對論核-核碰撞中夸克物質(zhì)的產(chǎn)生及其時空演化過程和雙輕子、光子、輕矢量介子硬光生過程,以及色玻璃凝聚態(tài)(colour glass condensate, CGC)、Glasma、夸克-膠子等離子體(quark-gluon plasma, QGP)和熱強子氣體(hadronic gas, HG)中的雙輕子、光子和輕矢量介子產(chǎn)生。在相對論核-核碰撞的早期,大轉(zhuǎn)移動量雙輕子、光子和輕矢量介子主要來源于初始部分子硬散射過程、硬光生過程和碎裂過程。部分子硬散射過程主要是夸克-反夸克湮滅、夸克-膠子康普頓散射和膠子-膠子聚變過程。硬光生過程包括彈性硬雙光子過程、半彈性(直接和分解)硬光生過程和深度非彈性(直接和分解)硬光生過程。在直接硬光生過程中,入射原子核(原子核內(nèi)的荷電部分子)發(fā)射的高能光子將會與另一個入射原子核內(nèi)的部分子通過夸克-光子康普頓散射、膠子-光子聚合相互作用產(chǎn)生雙輕子、光子和輕矢量介子。在分解硬光生過程中,入射原子核(原子核內(nèi)的荷電部分子)發(fā)射的高能類強子光子會漲落出部分子,然后漲落出來的部分子與另一個入射原子核內(nèi)的部分子通過夸克-反夸克湮滅、夸克-膠子康普頓散射和膠子-膠子聚合相互作用產(chǎn)生雙輕子、光子和輕矢量介子。此外,在碎裂過程中,快噴注在碎裂成雙輕子、光子和輕矢量介子之前,將會穿過核物質(zhì)媒介而損失能量(噴注淬火效應),損失能量后的快噴注再碎裂成雙輕子、光子和輕矢量介子。從數(shù)值結果可以看出,在大型強子對撞機(LHC)能區(qū)的p-p碰撞和Pb-Pb碰撞中,雙輕子、光子和輕矢量介子硬光生過程、碎裂過程的貢獻是顯著的。然而,在色玻璃凝聚膠子飽和框架下,膠子密度在轉(zhuǎn)移動量小于膠子飽和動量Qs時會出現(xiàn)飽和而形成色玻璃凝聚(CGC),然后處于色玻璃凝聚態(tài)的兩個原子核相互碰撞就會形成高膠子密度的非平衡態(tài)物質(zhì)Glasma。在極端相對論情況下,膠子飽和動量Qs將遠大于量子色動力學禁閉標度AQCD從而使得跑動耦合常數(shù)αs(Qs)《1,因此可以利用KT-因子化來計算色玻璃凝聚中的雙輕子、光子和輕矢量介子產(chǎn)生。在色玻璃凝聚膠子飽和區(qū)域,雙輕子、光子和輕矢量介子主要來源于膠子-膠子聚合相互作用過程。從數(shù)值結果可以看出,在相對論重離子對撞機(RHIC)和大型強子對撞機(LHC)能區(qū)的p-p碰撞、Au-Au碰撞、p-Pb碰撞和Pb-Pb碰撞中,來自于色玻璃凝聚的低轉(zhuǎn)移動量雙輕子、低轉(zhuǎn)移動量光子和低轉(zhuǎn)移動量輕矢量介子的貢獻是很重要的。此外,在色玻璃凝聚膠子飽和框架下,相對論核-核碰撞中心區(qū)域能量密度很高而可以形成高膠子密度Glasma態(tài),此時Glasma還沒有達到熱平衡,而是處于以膠子為主導的膠子飽和態(tài)。在膠子飽和區(qū)域,膠子飽和動量Qs將遠大于量子色動力學禁閉標度ΛQCD從而使得跑動耦合常數(shù)αs(Qs)1,此時就可以將Glasma看作為一個弱耦合系統(tǒng)并且可以用相對論動力學理論來描述。在Glasma中,低質(zhì)量雙輕子主要來源于夸克-反夸克湮滅過程,低轉(zhuǎn)移動量熱光子主要來源于夸克-反夸克湮滅、夸克-膠子康普頓散射和膠子-膠子聚合過程,而且由于Glasma是有膠子主導的,因此低轉(zhuǎn)移動量熱光子最主要的貢獻是來自于膠子-膠子聚合過程。從數(shù)值結果可以看出,在相對論重離子對撞機(RHIC)和大型強子對撞機(LHC)能區(qū),來自于Glasma的低不變質(zhì)量雙輕子和低轉(zhuǎn)移動量光子的貢獻是很顯著的。接著,隨著Glasma的膨脹,在固有時刻τth時Glasma將熱化形成熱夸克-膠子等離子體,在熱夸克-膠子等離子體低質(zhì)量雙輕子主要來源于夸克-反夸克湮滅過程,熱光子主要來源于夸克-反夸克湮滅和夸克-膠子康普頓散射過程。此外,來自于碰撞早期初始部分子硬散射過程和硬光生過程的快噴注也會穿過熱夸克-膠子等離子體,與熱部分子反生夸克-反夸克湮滅和夸克-膠子康普頓散射相互作用而產(chǎn)生熱雙輕子、熱光子和大橫動量輕矢量介子。對于熱雙輕子不變質(zhì)量譜,來自半彈性和深度非彈性硬光生過程的噴注-雙輕子轉(zhuǎn)換和Drell-Yan過程的貢獻是主要的。從數(shù)值結果可以看出,在大型強子對撞機(LHC)能區(qū),對于熱雙輕子、熱光子和大橫動量輕矢量介子產(chǎn)生,來自深度非彈性硬光生過程的噴注-媒介相互作用的貢獻是很顯著的。最后,隨著夸克-膠子等離子體的膨脹冷卻到臨界溫度時,熱系統(tǒng)將會進入夸克-膠子等離子體和強子的混合相,并在固有時刻τH時完全進入強子相,隨著熱強子氣體的膨脹并在固有時刻τf時達到強子凍結溫度Tf,熱強子系統(tǒng)進入強子凍結狀態(tài)。在熱強子氣體中,低質(zhì)量雙輕子主要來源于ππ→l+l-過程,低轉(zhuǎn)移動量光子主要來源于ππ→γγ、ππ→γρ、ππ→γη、πρ→π和πη-÷γπ過程,由于αρ=2.9,因此低轉(zhuǎn)移動量光子最主要的產(chǎn)生機制是πρ→γπ過程。在相對論重離子對撞機(RHIC)和大型強子對撞機(LHC)能區(qū),來自于熱強子氣體的低不變質(zhì)量雙輕子和低轉(zhuǎn)移動量光子的貢獻是很重要的。
[Abstract]:In relativistic heavy ion collisions, perturbative quantum chromodynamics (perturbative Quantum Chromodynamics, pQCD) in the central region of the material energy predicted collision density can be high enough and the formation of quark matter phase. The lifting of the ban in high energy heavy ion collision, collision center area mass density is high the material from the hadron quark matter phase into the lifting of the ban phase (Glasma and quark gluon plasma), and then continue to return to the quark hadron phase expansion cooling. When the material is in Glasma and the hot quark gluon plasma phase, two lepton quark matter molecular interaction between the central and the photon of light vector mesons (P, Omega, phi) will carry the quark matter information. This paper research the Relativistic Heavy Ion Collider (Relativistic Heavy Ion Collider, RHIC) and the Large Hadron Collider (Large Hadron, Collider, LHC) in relativistic nucleus nucleus The spatial and temporal evolution of quark matter produced in the collision and dileptons, photon, light vector mesons hardphotoproduction processes, as well as the color glass condensate (colour glass, condensate, CGC, Glasma), quark gluon plasma (quark-gluon plasma, QGP) and hot gas (hadronic hadron gas, HG) dileptons in the photon and light vector mesons. Early in relativistic nucleus nucleus collision, momentum transfer dileptons, photons and light vector mesons mainly originates from the initial part of the sub hard scattering process, hardphotoproduction processes and fragmentation process. Part of the sub hard scattering process is mainly quark antiquark annihilation, quark gluon the son of Compton scattering and the gluon gluon fusion process. Hardphotoproduction processes including elastic hard double photon process, semi elastic (direct and decomposition) hardphotoproduction processes and deep inelastic (direct and decomposition) hardphotoproduction processes. In hardphotoproduction processes, the original incident The nucleus (nucleus of charged molecules) high-energy photons will launch by quark photon Compton scattering with another incident in the nuclear Parton gluon photon polymerization produced by the interaction of photons and dileptons, light vector mesons. In hardphotoproduction decomposition process, the nuclear incident (in charge of nuclear molecular emission) high-energy photons will fluctuate through the class of Hadron molecules, and the fluctuation part with another incident in the nuclear part by quark antiquark annihilation, Compton scattering and quark gluon gluon gluon fusion produced by the interaction of dileptons photon, and light vector mesons. In addition, in the fragmentation process, fast injection in fractured double lepton, before the photon and light vector mesons, will pass through the nuclear material medium and loss of energy (jet quenching), fast jet energy loss after the broken double lepton, light And the light vector mesons. From the numerical results can be seen in the Large Hadron Collider (LHC) dileptons region P-P and Pb-Pb in the collision, collision, photon and light vector mesons hardphotoproduction processes, fragmentation contribution is significant. However, condensed in the color glass gluon saturation frame. The gluon density will be saturated and color glass condensate in momentum transfer is less than the gluon saturation momentum Qs (CGC), and then in the two nuclear states collide with the color glass condensate will form a nonequilibrium material Glasma. high gluon density in the relativistic case, the gluon saturation momentum will be far Qs greater than the QCD confinement scaling AQCD which makes the running coupling constant s (Qs) <1, so we can calculate dileptons color glass condensate in the use of KT- factor, produce photons and light vector mesons. Condensed gluon saturation region, in the light color glass dileptons. The interaction process and light vector mesons mainly from gluon gluon fusion. The numerical results can be seen in the Relativistic Heavy Ion Collider (RHIC) and the Large Hadron Collider (LHC) P-P region Au-Au collision, collision, collision and collision p-Pb Pb-Pb, from dileptons low transfer the amount of color glass condensate, low photon momentum transfer and low transfer weight vector meson contribution is very important. In addition, condensed in the color glass gluon saturation under the framework of the relativistic nuclear regional energy density is very high and the center of nuclear collisions can form high gluon density Glasma state, while the Glasma is still not thermal equilibrium is reached, but in the gluon dominated gluon saturation state. The gluon gluon saturation saturation region, Qs momentum will be far greater than the QCD confinement scaling a QCD so that the running coupling constant s (Qs) 1, will be at the Glasma as a Weak coupling system and can be described by relativistic dynamics theory. In Glasma, the low mass dileptons mainly originates from the quark antiquark annihilation process, low quantity of heat transfer mainly from photon quark antiquark annihilation, Compton scattering and quark gluon gluon gluon polymerization process, and the Glasma is a leading gluon, so low momentum transfer is the main contribution of thermal photons from the gluon gluon fusion. The numerical results can be seen in the Relativistic Heavy Ion Collider (RHIC) and the Large Hadron Collider (LHC) region, from the low quality Glasma constant dilepton and low photon momentum transfer contribution is very significant. Then, with the expansion of Glasma in natural time when Glasma will th the heat of formation of thermalized quark gluon plasma, in the hot quark gluon plasma low mass dileptons mainly derived from quark Anti quark annihilation process, thermal photons mainly from quark antiquark annihilation and quark gluon Compton scattering process. In addition, from the early part of the initial fast jet sub hard scattering process and hardphotoproduction processes of the collision will also wear hot quark gluon plasma, and the hot part of anti quark - anti sub health the quark quark gluon annihilation and Compton scattering from the interaction of thermal dileptons, thermal photons and large transverse momentum of light vector mesons. The thermal dilepton invariant mass spectrum, from semi elastic and deep inelastic hardphotoproduction processes of injection - dileptons conversion and Drell-Yan process is the main contribution from the numerical. The results can be seen in the Large Hadron Collider (LHC) energy region for thermal dileptons, thermal photons and large transverse momentum of light vector mesons produced from deep inelastic hardphotoproduction processes of injection - media interaction contribution is very significant. Finally, with the quark gluon plasma expansion cooling to the critical temperature, the system will enter the mixed hot quark gluon plasma and hadronic phase, and at the moment when the inherent tau H completely into the hadronic phase, with the expansion of the gas and hot hadronic inherent in the moment tau f reached the freezing temperature of Tf hot hadron hadron. The system into the frozen state. In hadron hadron gas heat, low mass dileptons Pi Pi, mainly from the l+l- process, low photon momentum transfer mainly from PI to PI gamma gamma, PI, PI gamma rho, Pi Pi, ETA gamma, PI, PI and PI ETA Rho - pi / gamma process by in the alpha Rho =2.9, so the low photon momentum transfer were the main mechanisms of PI, PI gamma rho. In Relativistic Heavy Ion Collider (RHIC) and the Large Hadron Collider (LHC) energy region from hot hadronic gas low mass dileptons constant and low photon momentum transfer contribution is very important.

【學位授予單位】:云南大學
【學位級別】:博士
【學位授予年份】:2016
【分類號】:O572.33

【相似文獻】

相關期刊論文 前10條

1 傅永平;李云德;;金-金碰撞中由雙光子過程產(chǎn)生的軟雙輕子(英文)[J];原子核物理評論;2012年03期

2 賀澤君;張家駒;邱錫鈞;;一個膨脹的熱核物質(zhì)的雙輕子譜[J];高能物理與核物理;1993年08期

3 管娜娜;;化學平衡化的夸克-膠子等離子體中產(chǎn)生的雙輕子的橫向質(zhì)量譜[J];廣西師范學院學報(自然科學版);2011年02期

4 賀澤君,張家駒,邱錫鈞;中心快度區(qū)的雙輕子不變質(zhì)量分布[J];高能物理與核物理;1995年11期

5 高嵩,李家榮;QGP中反應過程的內(nèi)線統(tǒng)計效應[J];高能物理與核物理;1994年03期

6 賀澤君,張家駒,王子興,邱錫鈞;膨脹的熱的富重子夸克-膠子物質(zhì)的雙輕子產(chǎn)生[J];高能物理與核物理;1998年07期

7 王棟;李劍波;;夸克-膠子等離子體中的雙輕子產(chǎn)率[J];廣西工學院學報(自然科學版);2010年03期

8 賀澤君,張家駒,,邱錫鈞;膨脹的熱的富重子夸克─膠子物質(zhì)的雙輕子產(chǎn)生的抑制[J];高能物理與核物理;1995年02期

9 賀澤君,張家駒,劉波,邱錫鈞;富重子夸克-膠子物質(zhì)雙輕子產(chǎn)生的快度依賴[J];高能物理與核物理;1999年04期

10 賀澤君,龍家麗,馬國亮,馬余剛,張家駒,劉波;化學非平衡夸克-膠子物質(zhì)中等質(zhì)量雙輕子的產(chǎn)生[J];物理學報;2003年11期

相關會議論文 前1條

1 周代翠;吳濤;王曉榮;錢琬燕;蔡勖;;LHC能區(qū)重核作用中的雙輕子產(chǎn)生與實驗觀測效應[A];第十一屆全國核物理大會論文集[C];2000年

相關博士學位論文 前8條

1 劉升旭;相對論重離子碰撞中的電磁探針[D];華中師范大學;2015年

2 余功明;極端相對論核—核碰撞中的雙輕子、光子和輕矢量介子產(chǎn)生[D];云南大學;2016年

3 徐浩潔;相對論重離子碰撞中的雙輕子產(chǎn)生[D];中國科學技術大學;2012年

4 郭毅;相對論重離子碰撞實驗中雙電子的產(chǎn)生[D];中國科學技術大學;2014年

5 黃柄矗;RHIC上質(zhì)子質(zhì)子對撞和金金對撞中雙輕子產(chǎn)額譜的測量[D];中國科學技術大學;2011年

6 傅永平;相對論重離子碰撞中的QGP相變與光子、雙輕子產(chǎn)生[D];云南大學;2011年

7 崔相利;RHIC上p~0的高橫動量譜及雙輕子橢圓流的測量[D];中國科學技術大學;2013年

8 陳繼勝;極端條件下強作用物質(zhì)介質(zhì)效應的研究[D];華中師范大學;2001年

相關碩士學位論文 前6條

1 賈紅偉;PP碰撞中雙輕子產(chǎn)生的Pythia模擬[D];華中師范大學;2015年

2 黃彩霞;粘滯夸克膠子等離子體中雙輕子的產(chǎn)生[D];華中師范大學;2012年

3 康忠波;強作用介質(zhì)中具有細致平衡的噴注淬火和雙輕子產(chǎn)生[D];華中師范大學;2003年

4 林玉;冷核中部分子能量損失對Drell-Yan過程的影響[D];華中師范大學;2013年

5 施秋陽;荷電矢量雙輕子與Higgs衰變H→γγ,Zγ[D];遼寧師范大學;2014年

6 吳譯文;pA碰撞Drell-Yan過程產(chǎn)生雙輕子及冷核效應對Pt譜影響研究[D];華中師范大學;2011年



本文編號:1710322

資料下載
論文發(fā)表

本文鏈接:http://sikaile.net/shoufeilunwen/jckxbs/1710322.html


Copyright(c)文論論文網(wǎng)All Rights Reserved | 網(wǎng)站地圖 |

版權申明:資料由用戶3e505***提供,本站僅收錄摘要或目錄,作者需要刪除請E-mail郵箱bigeng88@qq.com