基于Al-SiO_2和Al-SiO_2-C制備的鋁基復(fù)合材料微觀組織與力學(xué)性能
發(fā)布時間:2017-08-19 19:03
本文關(guān)鍵詞:基于Al-SiO_2和Al-SiO_2-C制備的鋁基復(fù)合材料微觀組織與力學(xué)性能
更多相關(guān)文章: 鋁基復(fù)合材料 微觀組織 力學(xué)性能 原位自生 干滑動摩擦 抑制Al4C3生成
【摘要】:本文以Al粉,Si O2粉和C粉為原料,制備Al2O3,Si C和Si為增強相的鋁基復(fù)合材料。同時研究了Al-Si O2和Al-Si O2-C兩種體系,采用球磨和反應(yīng)熱壓法制備鋁基復(fù)合材料。用低能球磨原料粉,然后在真空熱壓爐中燒結(jié)以合成新的增強相。對于Al-Si O2體系,分別用低能球磨和反應(yīng)熱壓法合成了增強相體積分數(shù)為10,20和30%的復(fù)合材料。研究了增強相體積分數(shù)對微觀組織和力學(xué)性能的影響。當(dāng)體積分數(shù)為10vol.%和20vol.%時,微觀組織觀察表明原位反應(yīng)生成的Al2O3和Si均勻分布在鋁基體上,并且增強相尺寸細小,小于2μm。而當(dāng)增強相的體積分數(shù)為30vol.%時,可以觀察到Al2O3尺寸達到2μm和塊狀初晶硅((~130μm)。利用DTA研究Al-SiO2和Al-Si O2-C兩種體系的反應(yīng)機制。加熱到900oC保溫1小時,足以使Al和Al O2發(fā)生完全反應(yīng),生成Al2O3和Si。然而,將C加入到AlSi O2體系中,反應(yīng)產(chǎn)物除了Al2O3和Si,還有Al4C3和Si C生成。原位反應(yīng)生成的Al2O3,Si C,Al4C3和Si均勻分布于鋁基體上,尺寸小于2μm。Al-Si O2-C體系的最佳燒結(jié)參數(shù)確定為:1050°C保溫1小時。當(dāng)Si O2/C/Al摩爾比為(6/3/9),伴隨著Al4C3的消失,在Al-Si O2-C體系中產(chǎn)生更多的Al2O3和Si。在Al-Si O2-C中Al4C3的消失歸因于在Al4C3周圍存在過量的Si,導(dǎo)致Si和Al4C3之間的擴散距離降低。因此,從鋁熱反應(yīng)中釋放出的單質(zhì)Si與Al4C3發(fā)生反應(yīng)生成Si C。測試和分析了燒結(jié)態(tài)和擠壓態(tài)復(fù)合材料的布氏硬度和室溫拉伸強度等力學(xué)性能。同時將未增強鋁基體與復(fù)合材料進行了對比。隨體積分數(shù)的增加,燒結(jié)態(tài)(Al2O3-Si)/Al復(fù)合材料的屈服強度和拉伸強度均有大幅增加,伴隨著延伸率的降低。當(dāng)體積分數(shù)由10%增加到20%時,屈服強度和抗拉強度分別從59MPa,121MPa增加到94MPa,171MPa,而延伸率從12.4%降低至6.7%。當(dāng)體積分數(shù)為30%,拉伸強度(107MPa)和延伸率(0.14%)反而降低,僅屈服強度(98MPa)略有增加。這主要是由于多方面因素的影響:(i)塊體Si中嵌入了大量Al2O3,(ii)由于體積分數(shù)高,燒結(jié)不致密,帶來了大量孔洞,導(dǎo)致力學(xué)性能降低。當(dāng)Si O2/Al/C摩爾比為(6/3/9),屈服強度和拉伸強度比那些摩爾比為(3/0/9)和(3/3/9)復(fù)合材料的高。這個提高主要是由于原位生成的高體積分數(shù)的增強相均勻分布于基體,并且這些細小的增強相和鋁基體界面干凈。討論了(Al2O3-Si)/Al復(fù)合材料的拉伸斷裂機制。隨著體積分數(shù)的增加,(Al2O3-Si)/Al復(fù)合材料由塑性斷裂轉(zhuǎn)變?yōu)榇嘈詳嗔选?Al2O3-Si)/Al復(fù)合材料的拉伸斷裂機制可以用孔洞形核和長大,然后是萌生于脆性Si相和Al基體界面上的裂紋的擴展。因此,復(fù)合材料的破壞主要歸因于脆性相Si的含量和形貌。一旦加入了不同摩爾比的C,斷裂模式從塑性轉(zhuǎn)變?yōu)榇嘈噪S著Si O2/C/Al摩爾比從(3/0/9),(3/3/9)到(6/3/9)。這個轉(zhuǎn)變主要是由于大量Al2O3,Si和Si C的存在。研究了熱擠壓對(Al2O3-Si)/Al復(fù)合材料微觀組織和拉伸性能的影響.熱擠壓在提高(Al2O3-Si)/Al復(fù)合材料力學(xué)性能方面起著重要作用,不同體積分數(shù)10,20和30vol.%復(fù)合材料熱擠壓后屈服強度,拉伸強度和延伸率與燒結(jié)態(tài)復(fù)合材料相比都有大幅提高。10%,20%和30%擠壓態(tài)復(fù)合材料的屈服強度、拉伸強度和延伸率分別為(133MPa,201MPa,18.3%),(173MPa,258MPa,14.8%)和(191MPa,213MPa,1.35%)。盡管增強相含量30%復(fù)合材料擠壓態(tài)拉伸性能比燒結(jié)態(tài)有所提高,但是仍舊低于20vol.%擠壓態(tài)復(fù)合材料。這主要是由于本次熱擠壓所采用的擠壓比并沒有很大程度改善復(fù)合材料中塊狀初晶Si的存在。這意味著采用高的擠壓比可以細化初晶Si塊,從而提高塑性。研究了基于Al-Si O2和Al-Si O2-C體系生成的鋁基復(fù)合材料的干滑動摩擦磨損行為。包括了載荷、滑動速度、滑動距離和增強相體積分數(shù)以及(Si O2/C/Al)摩爾比對摩擦性能,磨損面和摩擦系數(shù)的影響。并且,采用AFM研究不同尺寸的Si與表面粗糙度的關(guān)系。隨著體積分數(shù)從10%增加到20%,(Al2O3-Si)/Al復(fù)合材料的耐磨性能大幅增加。然而,當(dāng)體積分數(shù)增加到30%,Al2O3鑲嵌到大塊Si中,導(dǎo)致復(fù)合材料孔洞增加,耐磨性能降低。低體積分數(shù)時復(fù)合材料的磨損機制是粘著磨損和微切割,犁溝的混合磨損機制。隨著磨損嚴重,出現(xiàn)了深的彈坑,大的犁溝和裂紋。在體積分數(shù)30%復(fù)合材料的磨損面上出現(xiàn)了大量的Fe,表明通過斷裂和微切割出現(xiàn)了粘著磨損,磨粒磨損及劃定界限的磨損。當(dāng)載荷增加,原位復(fù)合材料的磨損量增加。并且,當(dāng)滑動速度增加,磨損量逐步下降,出現(xiàn)Al2O3氧化物導(dǎo)致摩擦系數(shù)下降。并且,摩擦系數(shù)隨滑動速度和載荷的增加而降低。因此,體積分數(shù)增加,摩擦系數(shù)基本上在同一范圍。當(dāng)(Si O2/Al/C)摩爾比從(3/0/9),(3/3/9)到(6/3/9),只有少量的增強相對進一步提高復(fù)合材料的摩擦性能有效。實際上,當(dāng)摩爾比從(3/0/9)變化到(6/3/9),與體積分數(shù)從10%增加到30%相比,只形成夠了細小的Si析出相。也就是說,當(dāng)(Si O2/C/Al)摩爾比是(6/3/9),原位生成更多Al2O3,Si C和Si顆粒。Al4C3被徹底從Al-Si O2-C系中消除。因此,耐磨性能得到大幅提高。結(jié)果,Al-Si O2和Al-Si O2-C體系通過反應(yīng)燒結(jié)制備原位反應(yīng)生成Si和其它增強相。對于Si量的控制要特別小心,以獲得良好的耐磨性能和力學(xué)性能。
【關(guān)鍵詞】:鋁基復(fù)合材料 微觀組織 力學(xué)性能 原位自生 干滑動摩擦 抑制Al4C3生成
【學(xué)位授予單位】:哈爾濱工業(yè)大學(xué)
【學(xué)位級別】:博士
【學(xué)位授予年份】:2015
【分類號】:TB333
【目錄】:
- 摘要3-5
- ABSTRACT5-14
- CHAPTER 1 INTRODUCTION14-41
- 1.1 BACKGROUND AND SIGNIFICANCE OF SUBJECT14-15
- 1.2 METAL MATRIX COMPOSITES OVERVIEW15-23
- 1.2.1 Classification of MMCs15-17
- 1.2.2 Particle reinforced AMCs17-18
- 1.2.3 Applications of particle reinforced AMCs18-20
- 1.2.4 Advantages and limitations of particle reinforced AMCs20
- 1.2.5 Notion of Hybrid in particle reinforced AMCs20-23
- 1.3 UNWANTED CHEMICAL REACTIONS IN AMCS23-25
- 1.4 MAIN FABRICATION METHODS FOR MMC25-32
- 1.4.1 In situ techniques26-32
- 1.5 MECHANICAL PROPERTIES OF AMCS REINFORCED WITH Al_2O_3, SiC AND Si32-33
- 1.6 PURE ALUMINUM AND Al-Si ALLOYS33-34
- 1.7 THEORY OF WEAR34-37
- 1.7.1 Abrasive wear35
- 1.7.2 Adhesive wear35-36
- 1.7.3 Erosive wear36
- 1.7.4 Surface fatigue wear36-37
- 1.7.5 Corrosive wear37
- 1.8 PARAMETERS INFLUENCES THE FRICTION AND WEAR MECHANISMS37-38
- 1.9 WEAR BEHAVIOR OF AMCS38-39
- 1.10 LAYOUT OF THESIS39-41
- CHAPTER 2 MATERIAL SYSTEM AND EXPERIMENTAL DETAILS41-47
- 2.1 RAW MATERIALS41-42
- 2.2 PROCESSING METHODS42-44
- 2.2.1 Ball milling42-43
- 2.2.2 Reactive hot pressing43
- 2.2.3 Hot extrusion process43-44
- 2.3 MICROSTRUCTURAL CHARACTERIZATION44-45
- 2.3.1 Differential thermal analysis44
- 2.3.2 Microstructural analysis44
- 2.3.3 X-ray diffraction44
- 2.3.4 Atomic Force Microscopy44-45
- 2.4 MECHANICAL TESTING45-47
- 2.4.1 Brinell hardness45
- 2.4.2 Room temperature tensile tests45-46
- 2.4.3 Dry sliding wear tests46
- 2.4.4 Relative density measurement46-47
- CHAPTER 3 REACTION MECHANISM, PROCESS OPTIMIZATION AND AL_4C_3 PREVENTION47-68
- 3.1 INTRODUCTION47
- 3.2 OPTIMIZATION OF BALL MILLING PARAMETERS47-49
- 3.3 THERMODYNAMIC CONSIDERATIONS AND DIFFERENTIAL THERMAL ANALYSIS (DTA)49-54
- 3.3.1 Thermodynamic analysis of the Al-Si O2 system49-50
- 3.3.2 Thermodynamic analysis of the Al-Si O2-C system50-52
- 3.3.3 Reaction Energy activation52-54
- 3.4 OPTIMIZATION OF SINTERING PARAMETERS54-63
- 3.4.1 XRD and microstructures in Al-Si O2 system55-58
- 3.4.2 XRD and Microstructures in SiO_2-Al-C system58-63
- 3.5 EFFECT OF THE SYNTHESIS TEMPERATURE IN PREVENTING AL4C363-66
- 3.6 SUMMARY66-68
- CHAPTER 4 FABRICATION OF (Al_2O_3-Si)/Al AND (Al_2O_3-SiC-Si)/Al MMCS68-82
- 4.1 INTRODUCTION68
- 4.2 FABRICATION TECHNOLOGY68-72
- 4.2.1 XRD and micro structural observations69-70
- 4.2.2 Effect of pressure70-72
- 4.3 EFFECT OF REINFORCEMENT VOLUME FRACTION ON MICROSTRUCTURE OF (Al_2O_3-SI)/AL MMCS72-75
- 4.4 EFFECT OF VARYING SiO2/C/AL MOLAR RATIO IN PREVENTING Al_4C_375-77
- 4.5 HOT EXTRUSION OF (Al_2O_3-Si)/AL MMCS77-81
- 4.5.1 Fabrication technology78-79
- 4.5.2 Microstructural analysis of as extruded (Al_2O_3-Si)/Al MMCs79-81
- 4.6 SUMMARY81-82
- CHAPTER 5 MECHANICAL CHARACTERIZATION OF IN SITU AL BASED COMPOSITES82-95
- 5.1 INTRODUCTION82
- 5.2 MECHANICAL PROPERTIES OF AS SINTERED COMPOSITES FABRICATED IN Al-SiO_2 SYSTEM82-87
- 5.2.1 Brinell hardness of as sintered composites83-84
- 5.2.2 Room tensile properties of as sintered composites84-85
- 5.2.3 Fracture surfaces of as sintered composites85-87
- 5.3 MECHANICAL PROPERTIES OF AS SINTERED COMPOSITES FABRICATED IN AL-SiO_2-C SYSTEM87-90
- 5.3.1 Brinell hardness of as sintered composites87-88
- 5.3.2 Room tensile properties of as sintered composites fabricated in Al-SiO_2-C system88-89
- 5.3.3 Fracture surfaces of as sintered composites89-90
- 5.4 MECHANICAL PROPERTIES OF AS EXTRUDED COMPOSITES FABRICATED IN AL-SiO_2 SYSTEM90-94
- 5.4.1 Brinell hardness of as extruded composites90-91
- 5.4.2 Room tensile properties of as extruded composites91-92
- 5.4.3 Fracture surfaces of as extruded composites92-94
- 5.5 SUMMARY94-95
- CHAPTER 6 WEAR CHARACTERISTICS AND FRICTION BEHAVIOR OF AL BASED COMPOSITES95-113
- 6.1 INTRODUCTION95
- 6.2 WEAR CHARACTERISTICS AND FRICTION BEHAVIOR OF (Al_2O_3-SI)/AL COMPOSITES95-107
- 6.2.1 Wear characteristics of as sintered (Al_2O_3-Si)/Al composites96-99
- 6.2.2 Wear surfaces of as sintered (Al_2O_3-Si)/Al composites99-103
- 6.2.3 Surface roughness of as sintered (Al_2O_3-Si)/Al composites103-106
- 6.2.4 Friction coefficients of as sintered (Al_2O_3-Si)/Al composites106-107
- 6.3 WEAR CHARACTERISTICS IN AL-Si_O_2-C SYSTEM107-111
- 6.4 SUMMARY111-113
- CONCLUSIONS113-115
- SCOPE FOR FUTURE WORK115-116
- INNOVATIONS116-117
- REFERENCES117-132
- PUBLICATIONS DURING PHD132-135
- ACKNOWLEDGEMENTS135-136
- CURRICULUM VITAE136
【參考文獻】
中國期刊全文數(shù)據(jù)庫 前1條
1 AKM Asif IQBAL;Yoshio ARAI;Wakako ARAKI;;SiC_p及Al_2O_(3w)增強鑄態(tài)混雜金屬基復(fù)合材料的疲勞裂紋擴展機理(英文)[J];Transactions of Nonferrous Metals Society of China;2014年S1期
,本文編號:702399
本文鏈接:http://sikaile.net/shoufeilunwen/gckjbs/702399.html
最近更新
教材專著